

UNIVERSIDAD DE COSTA RICA

FACULTAD DE INGENIERÍA

ESCUELA DE INGENIERÍA TOPOGRÁFICA

INFORME FINAL DE PROYECTO DE GRADUACIÓN PARA OPTAR POR EL TÍTULO DE LICENCIATURA EN INGENIERÍA TOPOGRÁFICA

"DESARROLLO DE UN ALGORITMO DE COLOCACIÓN AUTOMÁTICA DE PUNTOS DE CONTROL TERRESTRE Y EVALUACIÓN DE DIANAS U OBJETIVOS EN EL PROCESO DE ORTORECTIFICACIÓN DE LAS IMÁGENES OBTENIDAS CON CÁMARAS NO MÉTRICAS Y SISTEMAS AÉREOS NO TRIPULADOS, MEDIANTE LA UTILIZACIÓN DE VALORES DE PÍXEL"

ALBERTO CALDERÓN SÁNCHEZ

JULIO 2019

El Proyecto "Desarrollo de un algoritmo de colocación automática de puntos de control terrestre en la imagen y evaluación de dianas u Objetivos en el proceso de ortorectificación de las imágenes obtenidas con cámaras no métricas desde Sistemas Aéreos No Tripulados, mediante la utilización de valores de píxel" fue aprobado por el Tribunal Evaluador del Trabajo Final de Graduación, de la Escuela de Ingeniería Topográfica, de la Facultad de Ingeniería, de la Universidad de Costa Rica, como requisito para optar al grado de licenciatura en Ingeniería Topográfica.

MSc. Jaime Garbanzo León Director del Trabajo Final de Graduación

Lic. Rafael Villalobos Salazar.

Asesor del Trabajo Final de Graduación

MSc. Adolfo Gómez Astúa.

Asesor del Trabajo Final de Graduación

MSc. Juan Antonio Picado Salvatierra.

Presidente del Tribunal Evaluador del Trabajo Final de Graduación

MSc. Juan Gabriel Mc Gregor Sanabria.

Miembro del Tribunal Evaluador del Trabajo Final de Graduación

Alberto Calderón Sánchez.

Sustentante

Dedicatoria

A mi hija y mi mamá por su tiempo y comprensión.

- A Pau por su apoyo incondicional y ánimo en el proceso.
- A mi Alma Mater por darme la oportunidad.

Índice General

Resumen Ejecutivo xi	iv
Capítulo I. Introducción1	5
1.1.Justificación1	5
1.2. Problema	6
1.3. Objetivos1	6
1.3.1. Objetivo General1	6
1.3.2. Objetivos Específicos1	6
Capítulo II. Marco Teórico1	7
2.1. Desarrollo de Ortofotos1	7
2.2. Implementación de sistemas aéreos no tripulados a usos civiles2	:0
2.3. Automatización de procesos topográficos2	:2
2.4. Reflectancia de materiales2	3
Capítulo III. Metodología2	.4
3.1. Creación de dianas2	:5
3.1.1. Costo Económico2	:5
3.1.2. Entorno en campo2	:5
3.1.3. Geometría de las dianas2	:6
3.1.4. Valores de Reflectancia2	:7
3.2. Diseño e Implementación del Algoritmo de determinación de puntos de control terre	estre en
la imagen utilizando valores de píxel2	8
3.3. Caracterización y Determinación del Software Fotogramétrico de Procesamiento 3	51

3.4.1. Captura de datos	33
-------------------------	----

3.4.2. Prueba estadística de la exactitud del ortomosaico obtenido por medio de VANT38

- - Sección I. Resultados y Análisis de Resultados42

Capítulo V: Conclusiones y Recomendaciones	.84
Referencias Bibliográficas	.87
Anexos	.89
Anexo A. Características técnicas del VANT Phantom 4 Pro	.89

Anexo B. Características técnicas del fotómetro Sekonic Litemaster Pro L-478D-U92	
Anexo C. Características técnicas del Receptor GNSS Trimble R8s95	
Anexo D. Características técnicas del Receptor GNSS Spectra Precision SP-6096	
Anexo E. Características de los Software Fotogramétricos97	
Anexo F. Tabla de posiciones N, E, h de los puntos de control terrestre100	
Anexo G. Código de Programación en Python de Algoritmo de colocación automática de punt de control terrestre por valores de píxel100	tos
Anexo H. Comparación de la diferencia de las coordenadas para la componente N, E, h puntos de chequeo medidos con GNSS y obtenidos de la Ortofoto105	de

Índice de Figuras

Figura 1. Gráfico de Colineariedad	19
Figura 2. Relación entre el sensor, la imagen y el terreno	20
Figura 3. Ejemplos de tipos de VANT	21
Figura 4. Gráfica de Reflectancia espectral de una muestra de color	23
Figura 5. Diagrama de flujo de la investigación.	24
Figura 6. Diseño No 1 de dianas propuestas	27
Figura 7. Diseño No 2 de las dianas propuestas	27
Figura 8. Círculo Cromático	28
Figura 9. Cubo RGB	29
Figura 10. diana utilizada como insumo para código de Programación	29
Figura 11. Ubicación geográfica del área de estudio en Sistema de Coordenadas CR	TM05.
	32
Figura 12. DJI Phantom 4 Pro	33
Figura 13. Estructura de Ficha Técnica de Captura de Datos con Sistemas Aéreos No	0
Tripulados	35
Figura 14. Fotómetro Sekonic Litemaster Pro L-478-D-U.	37
Figura 15. Antena GNSS Spectra Precision SP-60	37
Figura 16. Antena GNSS Trimble R8s	38
Figura 17. Conjunto de Ecuaciones de determinación de valores de píxel puntuales d	le la diana
	47
Figura 18. Extracción de datos por cuadrante	52
Figura 19. Análisis de la diana en cuadrantes	53
Figura 20. Diagrama de Flujo de Algoritmo automático de determinación de puntos de	e control
terrestre en la imagen a partir de valores de píxel	54
Figura 21. Extracto de la matriz correspondiente a la diana en el canal verde (G)	56
Figura 22. Cantidad de datos generados automáticamente en el primer filtro para el c	anal R
(rojo)	57
Figura 23. Ubicación exacta del centro de la diana de estudio (posición No 4), encont	trada
automáticamente por el código de programación	61

Figura 24. Ubicación de posible centro de la diana de estudio (posición ruido No 8), enc	contrado
automáticamente por el código de programación	.62
Figura 25. Ubicación de posible centro de la diana de estudio (posición ruido No 17),	
encontrado automáticamente por el código de programación	.62
Figura 26. Ubicación de posible centro de la diana de estudio (posición ruido No 23),	
encontrado automáticamente por el código de programación	.63
Figura 27. Diseño de Plan de Vuelo en software DroneDeploy	.66
Figura 28. Diseño de Plan de Vuelo en software DroneDeploy	.66
Figura 29. Ficha Técnica 1 de Captura de datos con Sistemas Aéreos No Tripulados	.67
Figura 30. Ficha Técnica 2 de Captura de datos con Sistemas Aéreos No Tripulados	.68
Figura 31. Diagrama de flujo de procesamiento en software de ajuste fotogramétrico	.71
Figura 32. Ortofoto obtenida del procesamiento en el software de ajuste fotogramétrico	.72
Figura 33. Características técnicas del VANT Phantom 4 Pro	.92
Figura 34. Características técnicas del fotómetro Sekonic Litemaster Pro L-478D-U	.94
Figura 35. Características técnicas de la antena GNSS Trimble R8s	.95
Figura 36. Características técnicas de la antena GNSS Spectra Precision SP60	.96
Figura 37. Código implementado de algoritmo para determinación automática de puntos	s de
control terrestre en la imagen por valores de píxel por medio de bandas RGB	104

Índice de Tablas

Tabla 1. Detalle de tipos de diana según color, entorno y nivel de Reflectancia42
Tabla 2. Detalle de costos para la creación de diana44
Tabla 3. Valores nominales de píxel de la diana evaluada
Tabla 4. Valores finales de las posibles posiciones de la diana encontrados automáticamente
aplicando el segundo filtro de búsqueda58
Tabla 5. Valores finales de las posibles posiciones de la diana encontrados automáticamente,
aplicando el tercer filtro60
Tabla 6. Software de ajuste fotogramétrico más óptimos para la investigación63
Tabla 7. Coordenadas ajustadas del punto de ocupación base y las estaciones de operación
continua70
Tabla 8. Precisiones del punto de ocupación base con respecto a las estaciones de operación
continua
Tabla 9. Comparación de las diferencias promedio entre los puntos de chequeo medidos en
campo y puntos de chequeo obtenidos de la imagen en las componentes Este-Norte-Elevación.
Tabla 10. Comparación del Error Medio Cuadrático para la componente X, Y, Z, conforme a las
alturas de vuelo, niveles de Reflectancia y tipo de geometría de la diana
Tabla 11. Comparación del Error Medio Cuadrático para la componente X, Y, Z, conforme a las
alturas de vuelo, niveles de Reflectancia y tipo de geometría de la diana
Tabla 12. Comparación de Parámetros de proceso, conforme a las alturas de vuelo, niveles de
Reflectancia y tipo de geometría de la diana79
Tabla 13. Comparación de la Incertidumbre en restitución fotogramétrica conforme a las alturas
de vuelo, niveles de Reflectancia y tipo de geometría de la diana
Tabla 14. Geometría y color de dianas más óptimos según altura de vuelo
Tabla 15. Geometría y color de dianas menos óptimas según altura de vuelo
Tabla 16. Evaluación de características de Software Fotogramétricos de Procesamiento de
Imágenes Aéreas
Tabla 17. Tabla de Coordenadas N, E, h de puntos de control terrestre medidos en campo con
GNSS100

Tabla 18. Comparación de la diferencia de las coordenadas para la componente N, E, h de puntos de chequeo para vuelo con altura de 80m, Nivel de Reflectancia de diana Alta-Baja y Tabla 19. Comparación de la diferencia de las coordenadas para la componente X, Y, Z de puntos de chequeo para vuelo con altura de 80m, Nivel de Reflectancia de diana Alta y con Tabla 20. Comparación de la diferencia de las coordenadas para la componente E. N. h de puntos de chequeo para vuelo con altura de 80m, Nivel de Reflectancia de diana Baja y con Tabla 21. Comparación de la diferencia de las coordenadas para la componente N, E, h de puntos de chequeo para vuelo con altura de 100m, Nivel de Reflectancia de diana Alta-Baja y con Geometría de Cuadros Completos.110 Tabla 22. Comparación de la diferencia de las coordenadas para la componente N, E,h de puntos de chequeo para vuelo con altura de 100m, Nivel de Reflectancia de diana Alta y con Tabla 23. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 100m, Nivel de Reflectancia de diana Baja y con Tabla 24. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 120m, Nivel de Reflectancia de diana Alta-Baja y con Geometría de Cuadros Completos.116 Tabla 25. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 120m, Nivel de Reflectancia de diana Alta y con Tabla 26. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 120m, Nivel de Reflectancia de diana Baja y con Geometría de Cuadros Completos......120 Tabla 27. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 120m, Nivel de Reflectancia de diana Alta-Baja y Tabla 28. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 120m, Nivel de Reflectancia de diana Alta y con Geometría de Cruz......124

Tabla 29. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos
de chequeo para vuelo con altura de 120m, Nivel de Reflectancia de diana Baja y con Geometría
de Cruz
Tabla 30. Comparación de la diferencia de las coordenadas para la componente E, N, h de
puntos de chequeo para vuelo con altura de 80m, Nivel de Reflectancia de diana Alta-Baja y
con Geometría de Cruz128
Tabla 31. Comparación de la diferencia de las coordenadas para la componente E, N, h de
puntos de chequeo para vuelo con altura de 80m, Nivel de Reflectancia de diana Alta y con
Geometría de Cruz130
Tabla 32. Comparación de la diferencia de las coordenadas para la componente E, N, h de
puntos de chequeo para vuelo con altura de 80m, Nivel de Reflectancia de diana Baja y con
Geometría de Cruz132
Tabla 33. Comparación de la diferencia de las coordenadas para la componente E, N, h de
puntos de chequeo para vuelo con altura de 100m, Nivel de Reflectancia de diana Alta-Baja y
con Geometría de Cruz
Tabla 34. Comparación de la diferencia de las coordenadas para la componente E, N,h de
puntos de chequeo para vuelo con altura de 100m, Nivel de Reflectancia de diana Alta y con
Geometría de Cruz135
Tabla 35. Comparación de la diferencia de las coordenadas para la componente E, N, h de
puntos de chequeo para vuelo con altura de 100m, Nivel de Reflectancia de diana Baja y con
Geometría de Cruz136

Índice de Ecuaciones

Ecuación 1. Ecuación de Colineariedad18	
Ecuación 2. Fórmula del Error medio cuadrático para las coordenadas de chequeo X, Y, Z 3	9
Ecuación 3. Fórmula del Error medio cuadrático para las coordenadas de chequeo X, Y, Z 3	9
Ecuación 4. Fórmula del Error medio cuadrático en XY	
Ecuación 5. Fórmula del Coeficiente de exactitud posicional en XY para el caso $RMSE_x =$	
RMSE _y 40	
Ecuación 6. Fórmula del Coeficiente de exactitud posicional en XY para el caso RMSE _x ≠	
RMSE _y 40	
Ecuación 7. Fórmula del Coeficiente de exactitud posicional en Z40	
Ecuación 8. Ecuación de Incertidumbre en Restitución Fotogramétrica (píx)40	
Ecuación 9. Ecuación de Incertidumbre en Restitución Fotogramétrica (cm)41	
Ecuación 10. Promedio46	
Ecuación 11. Desviación Estándar46	
Ecuación 12. Diferencias entre los valores del extremo del tamaño de la diana47	
Ecuación 13. Condición Estadística 148	
Ecuación 14. Condición Estadística 248	
Ecuación 15. Condición Estadística 349	
Ecuación 16. Ecuación para determinar el rango de píxel de búsqueda50	
Ecuación 17. Condición Estadística 1 para límites50	
Ecuación 18. Ecuación para determinar el rango de píxel de búsqueda50	
Ecuación 19. Condición Estadística 1 para límites50	
Ecuación 20. Función Filtrar51	

Índice de Abreviaturas

VANT: Vehículo Aéreo No Tripulado.

GNSS: Sistema Global de Navegación por Satélite.

GCP (Siglas en Inglés): Punto de Control Terrestre.

CRTM05: Proyección Oficial Costa Rica Transversal de Mercator, año 2005.

NSSDA (Siglas en Inglés): National Standard for Spatial Data Accuracy.

Resumen Ejecutivo

La presente investigación pretende el desarrollo de un algoritmo de colocación automática de puntos de control terrestre y la evaluación de dianas en el proceso de ortorectificación de las imágenes obtenidas con Cámaras No Métricas y Sistemas Aéreos No Tripulados (VANT), mediante la utilización de valores de píxel.

Se confeccionaron además diferentes diseños de dianas, tomando en cuenta el costo de fabricación, durabilidad, niveles de reflectancia, tamaño, geometrías y entornos donde se colocarán. Estas fueron evaluadas a diferentes alturas de vuelo, resultando que conforme a una altura más baja de vuelo, la precisión horizontal mejora, con la limitación de aumentar el tiempo de procesamiento; en contraposición a vuelos de mayor altura.

Se diseñó un algoritmo matemático que utiliza valores estadísticos de las dianas para su caracterización. Seguidamente este algoritmo fue programado en el lenguaje Python, automatizando e iterando a lo largo de todos los valores que componen la imagen en el formato RGB (Red, Green, Blue), encontrando 23 posibles centros de diana.

Finalmente, se efectuó un estudio de caso en las Instalaciones Deportivas de la Universidad de Costa Rica, para determinar las precisiones del insumo fotogramétrico. Conforme a los datos obtenidos del muestreo de puntos sobre el terreno y la ortofoto, se generó una evaluación de las precisiones horizontales y verticales de los mismos, utilizando el test NSSDA.

De acuerdo a este procedimiento, se encontraron resultados favorables, al obtener datos con precisiones de calidad conforme a la base otorgada por la Desviación Estándar de los datos y parámetros del Registro Nacional

Capítulo I. Introducción

1.1. Justificación

La Fotogrametría está compuesta de diferentes procesos: la captura de imágenes, la captura de los datos de terreno, la orientación interna y externa de las imágenes, la correlación de imagen, generación de modelos de superficie, generación de modelos de terreno y mosaico fotogramétrico. (Aguilar, 2014). Entre los procesos fotogramétricos destaca la colocación de puntos de control terrestre (Ground Control Point, GCP, por sus siglas en inglés) en la imagen, paso determinante para establecer la relación exacta entre las imágenes del proyecto, el sensor y el terreno. López, 2006, p.1-2). La precisión en la colocación de los puntos de control mantiene una relación directamente proporcional con la calidad del ajuste del bloque fotogramétrico y su relación con la realidad (IGN, 2008); por lo tanto es de gran interés para mejorar la exactitud del modelado del terreno.

Según Mora (2013) el proceso de identificación de puntos de control actualmente se vuelve difícil al tener que ser localizados de forma manual y en cada una de las fotografías (p.30). Sin embargo, si se automatiza este proceso de colocación de puntos, entonces existiría una ganancia en tiempo de procesamiento.

Adicionalmente estos puntos de control deben ser identificados mediante dianas sobre el terreno. Según Forlani et al (2018), estas dianas (sobre los GCP) pueden ser artificiales o naturales; ambos tipos deben tener tamaño, forma y color adecuado para ser registrados desde diferentes alturas de vuelo. En el caso de las dianas naturales (elementos del ambiente que puedan ser localizados en la imagen) se debe tomar en cuenta de que pueden ser difíciles de encontrar de forma definida en áreas rurales (p.3). No obstante, si se crearan dianas con geometrías definidas, podrían ser más fácilmente reconocidos en distintos entornos y por lo tanto, generar una mayor exactitud y precisión en la colocación de los puntos de control terrestre.

Es por esta razón que esta investigación propone la creación de estas con parámetros específicos para realizar una observación más precisa y pronta de

estas, sobre los puntos de control terrestre en la imagen así como la exploración de un algoritmo para la automatización del proceso de colocación de puntos de control terrestre en la imagen a partir de los valores de píxel de las dianas.

1.2. Problema

Conforme a la justificación, se reconoce el problema de que el proceso actual para la identificación de puntos de control terrestre sobre las imágenes en procesos con Sistemas Aéreos No Tripulados es complejo, impreciso y lento. Por medio de esta investigación, se pretende aportar herramientas para facilitar el proceso de determinación de puntos de control terrestre sobre la imagen, así como, mejorar la observación del usuario del punto de control terrestre y la precisión de la colocación de estos puntos sobre los dianas.

1.3. Objetivos

1.3.1. Objetivo General

Desarrollar un algoritmo de colocación automática de puntos de control terrestre en la imagen y evaluación de dianas u objetivos en el proceso de ortorectificación de las imágenes obtenidas con cámaras no métricas desde Sistemas Aéreos No Tripulados, mediante la utilización de valores de píxel.

1.3.2. Objetivos Específicos

- Diseñar un algoritmo para colocar los puntos de control terrestre en la imagen a partir de los valores de píxel de la diana en el terreno.
- Programar el algoritmo para determinar el punto de control terrestre en la imagen, a partir de los valores de píxel de la diana u objetivo del terreno.
- Determinar las características óptimas para la confección de la diana u objetivo que se utilizará como punto de control en el terreno.
- Determinar el software más óptimo para la colocación de los puntos de

control terrestre en la imagen, a partir de valores de píxel.

• Comprobar la exactitud alcanzada en la colocación de puntos de control terrestre en la imagen mediante un estudio de caso.

Capítulo II. Marco Teórico

Se presentan a continuación un conjunto de conceptos necesarios para la compresión adecuada de esta investigación.

2.1. Desarrollo de Ortofotos

El desarrollo de las ortofotos ha sido tema de estudio desde el ingreso de los sensores pasivos en el que hacer de la ingeniería. Para esto se hace uso de diferentes sistemas de transporte de sensores remotos, como lo son satélites, vuelos aéreos con vehículos tripulados (Ibañez, Gisbert y Moreno, 2010, p.4-5) y más reciente sistemas aéreos no tripulados.

Los sensores utilizados varían de igual forma en los tres diferentes métodos de adquisición, de este modo se encuentran sensores remotos satelitales, con valores de píxel de aproximadamente 1 metro por píxel, cámaras métricas para vuelos tripulados, con las cuales se obtiene valores de píxel aproximadamente de 30 centímetro por píxel y por ultimo cámaras no métricas para la captura de datos con sistemas aéreos no tripulados; con este último se puede obtener hasta 3 centímetros por píxel. (Cardenal et al., 2014, p.204-205). Esto se da en su mayoría por la separación del sensor al terreno.

Se realiza en el sitio de la captura de la imagen el trabajo de campo con topografía satelital (Global Navigation Satellite System (GNSS)) o convencional, según sea el requerimiento solicitado. (Cardenal et al., 2014, p.205). Esta captura se realiza con el fin de obtener las coordenadas del terreno necesarias para realizar los ajustes en el proceso de generación de la ortofoto. Este proceso implica el tratamiento adecuado de la información colectada en campo para garantizar que la información es confiable.

La ubicación de los puntos de control terrestre en la imagen ofrece la relación directa entre las coordenadas de la imagen de los elementos con respecto a las coordenadas de dichos elementos en el terreno, mediante las ecuaciones de colineariedad (ver ecuación 1); esta fase mencionada, se realiza de dos formas: manual o semiautomática. (Aguilar, 2014).

$$\begin{split} \mathbf{x}_{a_{1}} - \mathbf{x}_{o} &= -f \Bigg[\frac{\mathbf{m}_{11}(\mathbf{X}_{A} - \mathbf{X}_{o_{1}}) + \mathbf{m}_{12}(\mathbf{Y}_{A} - \mathbf{Y}_{o_{1}}) + \mathbf{m}_{13}(\mathbf{Z}_{A} - \mathbf{Z}_{o_{1}})}{\mathbf{m}_{31}(\mathbf{X}_{A} - \mathbf{X}_{o_{1}}) + \mathbf{m}_{32}(\mathbf{Y}_{A} - \mathbf{Y}_{o_{1}}) + \mathbf{m}_{33}(\mathbf{Z}_{A} - \mathbf{Z}_{o_{1}})} \Bigg] \\ \mathbf{y}_{a_{1}} - \mathbf{y}_{o} &= -f \Bigg[\frac{\mathbf{m}_{21}(\mathbf{X}_{A} - \mathbf{X}_{o_{1}}) + \mathbf{m}_{22}(\mathbf{Y}_{A} - \mathbf{Y}_{o_{1}}) + \mathbf{m}_{23}(\mathbf{Z}_{A} - \mathbf{Z}_{o_{1}})}{\mathbf{m}_{31}(\mathbf{X}_{A} - \mathbf{X}_{o_{1}}) + \mathbf{m}_{32}(\mathbf{Y}_{A} - \mathbf{Y}_{o_{1}}) + \mathbf{m}_{33}(\mathbf{Z}_{A} - \mathbf{Z}_{o_{1}})} \Bigg] \\ \mathbf{x}_{a_{2}} - \mathbf{x}_{o} &= -f \Bigg[\frac{\mathbf{m}'_{11}(\mathbf{X}_{A} - \mathbf{X}_{o_{2}}) + \mathbf{m}'_{12}(\mathbf{Y}_{A} - \mathbf{Y}_{o_{2}}) + \mathbf{m}'_{13}(\mathbf{Z}_{A} - \mathbf{Z}_{o_{2}})}{\mathbf{m}'_{31}(\mathbf{X}_{A} - \mathbf{X}_{o_{2}}) + \mathbf{m}'_{32}(\mathbf{Y}_{A} - \mathbf{Y}_{o_{2}}) + \mathbf{m}'_{33}(\mathbf{Z}_{A} - \mathbf{Z}_{o_{2}})} \Bigg] \\ \mathbf{y}_{a_{2}} - \mathbf{y}_{o} &= -f \Bigg[\frac{\mathbf{m}'_{21}(\mathbf{X}_{A} - \mathbf{X}_{o_{2}}) + \mathbf{m}'_{22}(\mathbf{Y}_{A} - \mathbf{Y}_{o_{2}}) + \mathbf{m}'_{33}(\mathbf{Z}_{A} - \mathbf{Z}_{o_{2}})}{\mathbf{m}'_{31}(\mathbf{X}_{A} - \mathbf{X}_{o_{2}}) + \mathbf{m}'_{32}(\mathbf{Y}_{A} - \mathbf{Y}_{o_{2}}) + \mathbf{m}'_{33}(\mathbf{Z}_{A} - \mathbf{Z}_{o_{2}})} \Bigg] \\ \text{Ec. (1)} \end{aligned}$$

Fuente: Aguilar, 2014.

De forma manual el operador deberá de seleccionar estos puntos uno a uno e ir introduciendo las coordenadas de terreno. De forma semiautomática el operador selecciona los primeros tres puntos y el software a partir de las coordenadas de los puntos de control terrestre, estima los puntos restantes por medio de la triangulación de los datos. Una vez concluido este proceso se realizan evaluación de calidad por medio de los puntos de chequeo los cuales consisten en la medición de las coordenadas en la imagen de puntos que fueron medidos en el terreno pero no usados en el ajuste. La diferencia en estas coordenadas determina el error con el que se realizó el ortomoisaco. (Aguilar, 2014).

El Modelo Digital de Superficie (DSM por sus siglas en inglés) considera la estereoscopía propia de las imágenes capturadas para determinar las posiciones X, Y, Z de los puntos contenidos en las imágenes. De esta manera se crea una nube de puntos que general, la cual considera las elevaciones de todos los elementos

capturados en la imagen. Y genera la interpolación entre los valores de elevación de la misma. El DSM se convierte así en el insumo principal para la generación de Modelo Digital del Terreno, (DTM por sus siglas en inglés), en este modelo se eliminan los puntos que no pertenecen al terreno, como lo son vehículos, edificaciones entre otros. Así se obtiene los valores reales de las cotas de elevación de terreno en cada punto del bloque fotogramétrico. (Cuartero, 2003, p.47).

Finalmente se obtiene la ortofoto, la cual considera las deformaciones inherentes al terreno para corregir las distancias entre los puntos de los elementos capturados en la imagen (Ver figura 1 y 2), utilizando para esto diferentes métodos de rectificación y de georeferenciación de las imágenes. De esta forma se logra homologar las distancias en la imagen y en la realidad de los elementos de interés. (Cuartero, 2003, p.47-48).

Figura 1. Gráfico de Colineariedad. Fuente: Elaboración propia, 2018. Adaptado de Aguilar (2014).

Figura 2. Relación entre el sensor, la imagen y el terreno. Fuente: Elaboración propia, 2018. Adaptado de Aguilar (2014).

2.2. Implementación de sistemas aéreos no tripulados a usos civiles

Los Vehículo Aéreos No Tripulados (VANT) se han desarrollado en primera instancia para fines militares, sin embargo, su implementación como productos de uso civil ha mantenido su tendencia, al reducir los costos de fabricación y el uso de estos a aplicaciones civiles. (Barrientos et al., 2007, p.1).

El desarrollo de sistemas aéreos no tripulados ha representado un avance destacado en la industria electrónica a nivel mundial, ofreciendo un producto con características muy avanzadas, los cuales utilizan la infraestructura de datos espaciales como referencia. (Barrientos et al., 2007, p.2). Estos equipos se caracterizan principalmente por ser capaces de realizar una misión o vuelo sin necesidad de tener una tripulación embarcada. (Santos, 2017, p.7).

Los usos que se han desarrollado para estos equipos en el ámbito civil han sido basto, desde búsqueda, agricultura de precisión hasta búsqueda y rescate.

Los VANT se pueden clasificar en dos grupos principales: despegue vertical y despegue no vertical. (Miller, 2009, p.5). El grupo a utilizar en esta investigación es el concerniente despegue vertical específicamente los auto sustentados multi rotor (ver figura 3).

Figura 3. Ejemplos de tipos de VANT. Fuente:DJI-TRIMBLE, 2019.

Sin embargo, serán referentes para esta investigación aquellos que además de realizar esta función básica, cuenten además con sistemas de navegación satelital, GPS y GLONASS, posean dispositivos de posicionamiento vertical, barómetros, y cuente con Unidad de Movimiento Inercial (I.M.U por siglas en inglés).

Los VANT se han implementado como transportes de baja altura para los sensores de captura de datos para generación de fotogrametría y cartografía debido a la facilidad con la cual ofrece los valores requeridos en cada adquisición de la imagen. (Chávez, Cruz, Lagunas y Reyes, 2013, p.39-40).

Es necesario considerar que el requerimiento mínimo de las imágenes capturadas para el procesamiento adecuado y tratamiento de un mosaico fotogramétrico consiste en que estas imágenes posean los valores X, Y, Z y valores de Omega, Phi, Kappa del vuelo. (Aguilar, 2014). Además de valores de superposición de las imágenes de un mínimo de 60%. (Mora, 2013).

Debido a la tendencia moderna de este tipo de equipos y a su implementación para la disminución de costos, es necesario realizar estudios que permitan incrementar su funcionalidad en el campo de la Ingeniería Topográfica, por lo cual se utilizarán los VANT con los sensores mencionados anteriormente para las capturas de imágenes en el desarrollo de este proyecto.

2.3. Automatización de procesos topográficos

Se entiende por levantamiento topográfico al conjunto de operaciones que se realizan en el campo con el objeto de capturar la información necesaria que permita determinar las coordenadas rectangulares de los puntos del terreno, ya sea directamente o mediante un proceso de cálculo. (Torres y Villate, 1968, p.10-11).

El desarrollo del ejercicio profesional en el ámbito de la ingeniera topográfica ha percibido cambios importantes, tanto en los medios de captura de datos, al incluir equipos como estación total y equipos GNSS, como en la capacidad de procesamiento (Pachas, 2007, p.1-2). Siendo estos equipos cada vez más miniaturizados y mejorados en cuanto a precisión y almacenamiento.

Considerando siempre que la necesidad del manejo de información que hoy se caracteriza por cantidad y velocidad de cambio, hace que en todas las profesiones se tenga la necesidad de interactuar con algún lenguaje de programación para desarrollar aplicaciones útiles y seguras que permitan resolver problemas con rapidez, partiendo de la elaboración de un algoritmo, el cual se refiere a un "conjunto ordenado y finito de operaciones que permite hallar la solución de un problema" (Lucero, S. y Villareal, V., 2006, p.12).

De igual forma, es imperante mejorar los procesos inherentes al procesamiento de los datos obtenidos en campo, lo cual se resume en la necesidad de realizar estos procesos de la forma más eficiente, para lo cual el desarrollo en software y sensores es fundamental.

2.4. Reflectancia de materiales

La Irradiancia se refiere a la energía que alcanza a un cuerpo proveniente de otro por medio del espacio. Dentro de este fenómeno, se encuentra el concepto de Reflectancia ó Índice de Reflectancia Solar (SRI), la cual es la parte de la Irradiancia que refleja la superficie receptora. La Reflectancia es adimensional, pero normalmente se define mediante porcentajes (%) (Universidad de Murcia, s.f.), midiéndose en un rango que va desde 0% (negro) hasta 100% (blanco) como se observa en la figura 3 (Akbari, Levinson, & Berdahl, s.f.). Asimismo, la Reflectancia se mide en una escala de 0 (menos reflectante) a 1 (más reflectante), adicionalmente los valores de reflectancia son directamente proporcionales al ámbito del espectro visible que se encuentren, de esta forma los valores con niveles de reflectancia más bajos corresponderán a las longitudes de onda más cortas y en contraposición las longitudes de onda más largas corresponden a colores con alta reflectancia, como se observa en la figura 4.

En este proyecto se realizarán dianas con geometrías y colores que tomen en cuenta el entorno en el que se ubicarán y los valores de Reflectancia para cada color según el entorno en que se utilizarán. En la sección 3.1 de la Metodología, se extenderá este concepto y su relación con este trabajo.

Figura 4. Gráfica de Reflectancia espectral de una muestra de color. Fuente: Konica Minolta, s.f.

Capítulo III. Metodología

Para esta investigación, se pretendió ubicar de forma automática los puntos de control sobre las imágenes aéreas y la implementación de dianas que facilitaran la determinación de los mismos en diferentes entornos, con las cuales se permitiera la obtención de mejoras en el flujo de trabajo para la generación del producto final. Como se observa en el diagrama de flujo en la figura 5, este proceso dio inició con la caracterización y construcción de las dianas, seguidamente con el diseño e implementación de un algoritmo automático de ubicación de dianas; posteriormente, con la evaluación de distintos bloques y dianas realizadas, en casos prácticos aplicados.

Figura 5. Diagrama de flujo de la investigación. Fuente: Elaboración propia, 2018.

3.1. Caracterización para la creación de dianas

Para la creación de las dianas se valoraron cuatro factores, el costo económico de fabricar las piezas de las dianas, el entorno en el cual van a ser utilizadas, la geometría más adecuada para determinar el centro de las dianas y la capacidad de reflectancia.

3.1.1. Costo Económico

Para la fabricación de las dianas se consideró como un factor determinante el costo de realizar las mismas, ya que se desea el menor costo posible, mayor durabilidad y facilidad de transporte de las mismas en los sitios de trabajo. Para esto se eligieron láminas de contrachapado (conocido como Plywood) con 5.5 milímetros de espesor, ya que tienen la característica de tener un precio asequible, ser de fácil transporte y de que a pesar de ser un material liviano, no se desplaza con facilidad por el viento. Estas láminas tienen un costo en el mercado de @9 595.00 (para el año 2018) en tamaños de 122x244cm y de cada lámina se pueden obtener hasta 8 figuras diferentes (utilizables a ambos lados). Para este proyecto, se crearon 24 dianas, por lo cual fue necesario adquirir solamente dos láminas para lograr la fabricación de las mismas en dimensiones de 60 x 60 cm.

Posteriormente, se adquirieron elementos como brochas, cinta y pintura con base de agua para pintar las dianas en colores negro, blanco, amarillo, rosado, verde, azul y rojo, para definir la geometría de las dianas.

3.1.2. Entorno en campo

Debido a los posibles entornos en los cuales se puede requerir colocar el punto de control se establecen los siguientes parámetros: coberturas verdes, suelo mineral o pastos secos, losas de concreto o pavimentos rígidos y pavimentos asfálticos o flexibles.

Estos entornos fueron elegidos por sus diferentes valores de reflectancia, por lo cual es necesario realizar el análisis individual de cada uno, para de esta forma determinar la idoneidad y contraste de las dianas con cada entorno.

3.1.3. Geometría de las dianas

Se diseñaron dos tipos de dianas, considerando su geometría interna como un parámetro fundamental en la selección del centro de las mismas, ya que es en este en el que se encontrará el punto de control terrestre medido en campo. La calidad de las dianas se definirá considerando que mantenga una geometría interna constante y observable desde las diferentes alturas de vuelo, minimizando el ruido debido a la reflectancia en el espectro de color visible y la solarización del mismo al ser captado por el sensor aerotransportado.

Según la Directiva Operacional de Operaciones con Sistema de Aeronave Piloteada a Distancia (DO-001-OPS-RPAS) (2017), las alturas de vuelo máximas para Sistemas Aéreos No Tripulados son de 120 m de altura, por lo que la resolución espacial máxima que se puede obtener es de 3.2 cm/píx para este tipo de vuelos. Es por esta razón que se dispone que las dianas cuenten con dos tipos de diseño: Geometría de "Cruz" y Geometría de "Cuadros Completos". Como se observa en la Figura 6 el diseño de Geometría de "Cruz" cuenta con franjas de 6 cm que conforman una cruz, con lo cual se debería de establecer de forma precisa el valor central de la diana.

Por otro lado, en el diseño de "Cuadros Completos" (Figura 7) se presenta una diana pintada con dos colores diferentes a la mitad. Con esta forma se esperaría que el valor central de la diana se encuentre por diferencia de color en las mismas, logrando con esto la determinación del centro en ambas geometrías de las dianas.

Figura 6. Diseño No 1 "Geometría de Cruz" de dianas propuestas. Fuente: Elaboración propia, 2018.

Figura 7. Diseño No 2 "Cuadros Completos" de las dianas propuestas. Fuente: Elaboración propia, 2018.

3.1.4. Valores de Reflectancia

Los colores seleccionados para la confección de las dianas se determinaron utilizando los valores de reflectancia, obteniendo de esta forma tres tipos de dianas: con altos valores de reflectancia (70 a 90% de reflectancia) y con bajos valores de reflectancia (50 a 35% de reflectancia). Adicionalmente, se utilizaron los colores opuestos al entorno de estudio según lo dispuesto en el círculo cromático (Ver Figura 8) con los cuales se espera que el color de la diana destaque en el entorno en el cual fue colocado y sea más sencillo para el operador su determinación rápida y confiable.

Figura 8. Círculo Cromático. Fuente: Kuppers, 1992.

3.2. Diseño e Implementación del Algoritmo de determinación de puntos de control terrestre en la imagen utilizando valores de píxel.

Para la determinación de los puntos de control terrestre en la imagen utilizando los valores de píxel, es necesario comprender que las imágenes que se van a utilizar cuentan con tres bandas, conformadas por medio de la estructura de almacenamiento de datos en 8 bits con canales RGB (Rojo, verde y azul, por sus siglas en inglés) (ver figura 9). De esta forma, se van almacenando datos que comprenden valores desde 0 hasta 255 para cada entrada en las bandas, y por ende existe un arreglo matricial que define cada color (valor del píxel) conformado por tres valores en cada entrada de la matriz, organizados en una Tupla; es decir, un conjunto de valores separados por coma, de tipo "secuencia" (Python, 2017). Adicionalmente estas Tuplas se encuentran determinadas por una matriz de dos entradas; [i] filas, [j] columnas. Las posiciones de estas filas y columnas ([i] [j]) dentro de la matriz permiten determinar la posición de las dianas.

Figura 9. Cubo RGB. Fuente: Kuppers, 1992.

Es por esta razón que se inició con el diseño de un algoritmo para la ubicación automática de puntos de control terrestre en la imagen aérea, para el cual primeramente se debía extraer la imagen de una diana obtenida a partir de una ortofoto preliminar, en este caso la diana Amarilla-Negra en el diseño de Cuadros Completos, de la imagen completa de estudio. Esta diana fue escogida por ser la que tiene mayor dificultad de ser identificada en su entorno (Ver figura 10).

Figura 10. Diana utilizada como insumo para código de Programación. Fuente: Elaboración propia, 2019.

Seguidamente, se realizó la separación por color del cubo RGB de la imagen de esta diana en un arreglo matemático. Este arreglo matemático se almacenó como un arreglo matricial, considerando cada entrada de la matriz como una matriz independiente para cada canal del cubo RGB. De esta forma fue posible ejecutar operaciones matriciales y análisis estadísticos a los valores que componen la imagen, con el fin de comprender el comportamiento matemático de las dianas y así determinar los parámetros que serán utilizados en los siguientes etapas del

algoritmo, como lo son el promedio, desviación estándar, máximos y mínimos de los datos. Se considera para la realización de estas operaciones, los valores conocidos de resolución espacial y tamaño de diana.

Posteriormente se implementaron tres filtros, con los cuales conforme se fuesen aplicando, se encontrarían resultados cada vez más precisos de las posiciones de los posibles centros de las dianas a partir de los valores de píxel de la imagen.

El primer filtro, consistió en la extracción de valores puntuales de píxel de la matriz, los cuales corresponden a posibles posiciones específicas de la diana, utilizando para esto el conocimiento previo del tamaño real de la diana y el valor de resolución espacial. Después se evaluaron los valores de los píxel obtenidos y se compararon con los valores promedio de la diana, tomando en cuenta la desviación estándar al 99% de confianza y los valores máximos y mínimos. Este filtro permite definir un primer conjunto de posiciones de píxel donde posiblemente se encuentren las dianas en la imagen completa de estudio, generando un primer insumo confiable y eficiente.

Como segundo filtro, se realizó un filtrado de posiciones en las matrices resultantes del primer filtro, considerando un rango de búsqueda en valores de píxeles, en el cual se determinaron posiciones semejantes en las tres matrices correspondientes a cada canal del modelo RGB.

Para el tercer filtro se utilizaron las listas de posibles posiciones de centros de diana resultantes del segundo filtro y se evaluaron los valores circundantes a estas, por medio de núcleos o bloques de igual tamaño a cada subcuadrante de la geometría interna de la diana. A estos datos se les aplicó una diferencia matemática según sus características de reflectancia y su posición en la diana. De la misma forma, se calculó el valor mínimo posible que debía tener dicha diferencia.

Por último se realizó un filtrado de valores de la lista resultante de la etapa anterior tomando en cuenta su proximidad en posición, con eso se pretendía que en casos en los cuales se representara el mismo elemento físico con dos posiciones cercanas, se promediaran y reflejaran finalmente la cantidad correcta de elementos en la imagen.

Posteriormente, se realizó la programación de este algoritmo implementado, mediante un código en el lenguaje Python, haciendo uso de librerías como Python Imaging Library (PIL) y PIILOW, las cuales permiten realizar procesos sobre imágenes; Geospatial Data Abstraction Library (GDAL) que permite realizar estos procesos con grandes cantidades de datos, y el paquete NUMPY y SCIPY, el cual consiste en una librería con operadores para realizar cálculos matriciales. Para la prueba del algoritmo automático, se utilizó una imagen que tuviese solo valores del modelo RGB en formato JPG.

3.3. Caracterización y Determinación del Software Fotogramétrico de Procesamiento

Se investigaron, de forma digital con el uso de Internet, cuáles software de procesamiento fotogramétricos (con procesamiento atendido) se ofrecen actualmente en el mercado y se identificaron diferentes características de los mismos, como lo son el tipo de licenciamiento (pago o gratuito), tipo de procesamiento (local o en la nube), facilidad en la selección de parámetros y ajustes de procesamiento, capacidad de generar la información de los puntos de chequeo directamente en el software y como aspecto fundamental, la capacidad de incorporación de puntos de control terrestre (GCP) por parte del usuario en alguna etapa del procesamiento para la obtención del bloque fotogramétrico.

Siendo la mejor opción el programa de ajuste que sea software libre, con procesamiento local, con alta posibilidad de parametrización en los procesos del ajuste, permita la extracción de la información requerida como puntos de chequeo y permita la selección de puntos de control terrestre a partir de la visualización de las dianas en el terreno.

3.4. Comprobación de la exactitud en la colocación de puntos de control terrestre en el caso práctico ubicado en la Zona de Finca 3: Instalaciones Deportivas de la Universidad de Costa Rica Para la evaluación en esta investigación, se eligió como área de estudio la zona de Finca 3: Instalaciones Deportivas de la Universidad de Costa Rica, ubicada en el distrito 02- Sabanilla, cantón 15- Montes de Oca, provincia 01- San José (ver figura 11). Esto debido a que el sitio brinda la ventaja de no tener cambios abruptos en las elevaciones del terreno y por lo tanto, la resolución espacial de la imagen tendrá muy poca variación. Asimismo, cuenta con los cuatro entornos físicos en los cuales se analizará el comportamiento de las diferentes dianas sobre el terreno.

Figura 11. Ubicación geográfica del área de estudio en Sistema de Coordenadas CRTM05. Fuente: Elaboración propia, adaptada de Hoja Cartográfica Moravia 1:10 000, 1991.

El proceso de evaluación en el caso práctico tomará en cuenta tres etapas; la primera consta de la planificación del trabajo de campo y determinación de zonas aptas para las dianas; la segunda se refiere al trabajo de campo y captura de datos, y la tercera etapa, comprende el procesamiento de los datos obtenidos.

Inicialmente se realiza una selección de las zonas adecuadas para ubicar los puntos de control, ya que estos deben poder ser observados en la imagen obtenida del vuelo con fines fotogramétricos. Seguidamente, se procede a la colocación y medición con equipo GNSS RTK (por sus siglas en inglés Real Time Kinematic) de las dianas en el sitio de estudio, según los entornos a evaluar, para un total de 24 dianas. Una vez ubicadas las dianas sobre el terreno, se programa y realiza el vuelo con fines fotogramétricos por medio de un vehículo Aéreo No Tripulado (VANT), para un total de 6 vuelos.

Posteriormente, se ajustan los datos obtenidos con las antenas GNSS y en el software fotogramétrico se determina la ubicación los puntos de control sobre las imágenes y se procesan los datos, consiguiendo como resultado ortofotos sobre las cuales se seleccionan puntos de control para ser evaluados con las posiciones de las mismas obtenidas con el equipo GNSS.

3.4.1. Captura de datos

Para esta investigación en la etapa de captura de datos, se utilizó un equipo Phantom 4 Pro (ver Figura 12) de la marca comercial Dà-Jiāng Innovations (DJI), ya que ofrece la capacidad de poder realizar captura de fotografías para fines fotogramétricos con alta precisión y a baja altura. Además, cuenta con una gran penetración en el mercado nacional, por tener buenas prestaciones y tener un costo moderado (ver anexo A).

Figura 12. DJI Phantom 4 Pro. Fuente: DJI, 2018.

Los VANT poseen un alto grado de automatización al ser debidamente programados para realizar Planes de Vuelo, en los cuales se planifica el comportamiento de estos cuando están el aire, tomando en cuenta factores como altura de vuelo, traslape y solape de las fajas fotográficas, configuración del sensor, líneas de vuelo y velocidad de captura. Estos Planes de Vuelo se hicieron mediante el software Drone Deploy, ya que este permite realizar la programación de los mismos desde la página web de escritorio. De la misma manera, como parte de la planificación, se realizó una Ficha Técnica de Captura de Datos con Sistemas Aéreos No Tripulados, en la cual se recopilan los principales datos de cada vuelo a realizar (ver figura 13).

FICHA TECNI	CA DE CAPTURA DE DATOS CON SISTEMAS AEREOS NO TRIPULADOS
Fecha	//
Proyecto	
Ubicación	
	Provincia Cantón
	Distrito
	Barrio
Descripción del proyecto	
Información de piloto	
Información de UAV	
Información de sensor	
Tipo de diana utilizada	
Tipo de diana utilizada	
Tipo de diana utilizada	
Tipo de diana utilizada Condición metereológica	
Tipo de diana utilizada Condición metereológica	
Tipo de diana utilizada Condición metereológica	

Figura 13. Estructura de Ficha Técnica de Captura de Datos con Sistemas Aéreos No Tripulados. Fuente: Elaboración propia, 2018.

Para la captura de los datos se definieron tres tipos diferentes de alturas de vuelo del VANT: 80m de altura, 100m de altura y 120m de altura; todas estas determinadas desde el punto de partida del VANT. Con esto se pretende realizar evaluaciones de las dianas, para indicar si es determinante la altura de vuelo sobre la conservación de la geometría interna de la diana o si se puede despreciar este factor. En este caso el sensor que porta el Phantom 4 Pro posee un valor de visión de campo (FOV, por sus siglas en inglés) de 84° de amplitud, siendo este un lente gran angular (60°< Gran angular < 100°), con lo cual se esperan valores de resolución espacial entre los 2.2 cm/píx y 3.2 cm/píx, para las alturas de vuelo a utilizar.

Después de la planificación del vuelo, se colocan las dianas sobre el terreno, ubicadas por colores según los entornos ya definidos. Cabe recalcar que estas deben ser posicionadas al nivel del terreno y en sitios que concuerden con la forma plana de las dianas. Seguidamente, se procede a efectuar el vuelo fotogramétrico con respecto a los parámetros de los Planes de Vuelo, con ayuda del software Drone Deploy.

Adicionalmente, se realizaron las mediciones de los valores de intensidad de luz en el momento del vuelo con un Fotómetro Sekonic Litemaster Pro L-478-D-U, el cual se observa en la figura 14 y sus respectivas características técnicas en el Anexo B. De la misma manera, se midieron valores climatológicos del sitio en el momento del vuelo, como ráfagas de viento, viento y precipitación, esto para descartar cualquier posible error en la corrección de las imágenes debido a cambios importantes en la trayectoria del vuelo.

Figura 14. Fotómetro Sekonic Litemaster Pro L-478-D-U. Fuente: Sekonic, s.f.

Como última etapa, se realizaron las mediciones de los centros de las dianas con equipos GNSS doble frecuencia Trimble R8s y Spectra Precision SP-60 (ver figura 15-16 y Anexo C para sus características técnicas), con la metodología RTK (por sus siglas en inglés Real Time Kinematic) y se enlazaron al sistema de coordenadas oficial CRTM05.

Figura 15. Antena GNSS Spectra Precision SP-60. Fuente: Spectra Geospatial, 2016.

Figura 16. Antena GNSS Trimble R8s. Fuente: Trimble, 2015.

Posterior a la captura de datos, se debe procesar la información obtenida tanto por el VANT como el equipo GNSS. Para el procesamiento GNSS se utilizó el software Topcon Tools. Con esto se pretende determinar el error que existe entre la posición real de los puntos de chequeo del levantamiento topográfico GNSS y el valor medido en la imagen proveniente del software fotogramétrico.

3.4.2. Prueba estadística de la exactitud del ortomosaico obtenido por medio de VANT

Derivado de las evaluaciones en la posición de los puntos de chequeo, se puede calcular por medio del Test "National Standar for Spatial Data Accuracy" (NSSDA) el error real de la muestra a analizar, conforme a un nivel de confianza del 95% y a tolerancias especificadas por el usuario. Este test es utilizado por las principales agencias federales de los Estados Unidos de América y desarrollado específicamente por la "Federal Geographic Data Committee" (FGDC) para analizar la componente horizontal (XY ó Norte y Este) y vertical (Z ó Elevación) de la cartografía y resultados fotogramétricos, ofreciendo un índice de calidad en unidades reales sobre el terreno (Federal Geographic Data Committee, 1998). En el Test NSSDA, se selecciona primeramente una muestra de mínimo 20 puntos,

en este caso para cumplir con la regla estadística empírica de los 30 puntos, se utilizaron 33 puntos de chequeo medidos con la tecnología GNSS, datos que serán comparados con las coordenadas XYZ de estos mismos puntos, obtenidas del marcaje sobre la imagen. Asimismo, se detectaron inconsistencias, ruidos, entre otros, los cuales fueron eliminados. Seguidamente, se calculó el Error Medio Cuadrático para la coordenada X y Y (RMSE_{x.,} RMSE_Y), y el Error medio cuadrático (RMSE_r) para XY, como se muestra en las siguientes ecuaciones (Atkinson-Gordo, García-Balboa & Ariza-López, 2001).

$$RMSE_{x} = \sqrt[2]{\left[\frac{\sum(x_{chequeo\ ortofoto,i} - x_{chequeo\ GNSS,i})^{2}}{n}\right]}$$

Ec. (1)

$$RMSE_{y} = \sqrt[2]{\left[\frac{\sum(y_{chequeo\ ortofoto,i} - y_{chequeo\ GNSS,i})^{2}}{n}\right]}$$
Ec. (2)

Donde:

Ychequeo ortofoto,i, Xchequeo ortofoto,i = Coordenadas en la componente X y Y de los puntos de chequeo obtenidos de la ortofoto.

Ychequeo GNSS,i, Xchequeo GNSS,i = Coordenadas en la componente X y Y de los puntos de chequeo obtenidos de la medición GNSS.

n= Número de puntos de chequeo.

i= Rango de valores de 1 a n.

Fuente: Federal Geographic Data Committee, 1998.

$$RMSE_r = \sqrt{RMSE_X^2 + RMSE_Y^2}$$
 Ec. (3)

Fuente: Atkinson-Gordo, García-Balboa & Ariza-López, 2001.

Posteriormente, se calculó el coeficiente de exactitud posicional en XY, teniendo en cuenta dos casos distintos: si el RMSE_x = RMSE_y, se usaría la ecuación 5; por el contrario, si el RMSE_x≠ RMSE_y debía emplearse la ecuación 6. De la misma manera se calculó el coeficiente de exactitud posicional para la coordenada en Z con la ecuación 7 (Atkinson-Gordo, García-Balboa & Ariza-López, 2001).

Exactitud
$$_r = 1.7308 \cdot RMSE_r$$
 Ec. (4)

Fuente: Atkinson-Gordo, García-Balboa & Ariza-López, 2001.

Exactitud _r =
$$1.22385 \cdot (RMSE_X + RMSE_Y)$$
 Ec. (5)

Fuente: Atkinson-Gordo, García-Balboa & Ariza-López, 2001.

Exactitud
$$_{Z} = 1.96 \cdot RMSE_{Z}$$
 Ec. (6)

Fuente: Atkinson-Gordo, García-Balboa & Ariza-López, 2001.

Asimismo, se calcularon los valores de Incertidumbre de la Restitución Fotogramétrica para evaluar las precisiones de las diferencias de los puntos de chequeo a las alturas de vuelo y niveles de reflectancia, por medio de valores de Coeficiente de Exactitud y Resolución espacial. Estas ecuaciones se muestran a continuación.

$$\sigma_{pix} = \left(\frac{\text{Resolución espacial}}{\text{Exactitud}_r}\right)^{-1}$$

Donde:

 $\sigma_{pix} =$ Incertidumbre en Restitución Fotogramétrica (píx)

Ec. (7)

Fuente: Elaboración propia, 2019.

$$\sigma_{cm} = \sigma_{pix} * Resolución Espacial$$

Donde:

 σ_{cm} = Incertidumbre en Restitución Fotogramétrica (píx)

Ec. (8)

Fuente: Elaboración propia, 2019.

Para este caso práctico, se definió una tolerancia específica, la cual será determinada por los parámetros correspondientes a las componentes X y Y a la Directriz RIM-001-2012, en la cual se define una tolerancia máxima para este tipo de levantamientos en la exactitud relativa de las coordenadas de ±6cm a escala 1:1000 (Rodríguez, 2012, Directriz RIM-001-2012, p.4). Para el caso de la componente vertical Z se estableció que la desviación estándar al 99% de confianza del conjunto a analizar, sería el valor máximo posible permitido para aceptar los valores como correctos.

Además se utilizaron los parámetros de altura de vuelo y el valor final de la resolución espacial (cm/píx) en la ortofoto generada, con los cuales se obtuvieron que para vuelos a 80 m, 100m y 120m se obtiene una resolución espacial de 2.2 cm/píx, 2.7 cm/píx y 3.2 cm/píx respectivamente.

Por otro lado, se evaluó la Calidad de la Geometría de la diana, efectuándose tablas comparativas entre las geometrías de las mismas dependiendo del entorno, color y diseño, para definir la más óptima. También se generaron tablas comparativas de las características y definición de software más óptimo para el procesamiento de datos fotogramétricos.

Capítulo IV: Desarrollo

Sección I. Resultados y Análisis de Resultados

4.1.1. Determinación de las características óptimas para la confección de la diana a utilizar como punto de control en el terreno

En los proyectos fotogramétricos en los cuales se involucran VANT como transporte de los sensores, en muchos casos se utilizan como puntos de control terrestre elementos existente en sitio y visibles desde las imágenes capturadas, con lo cual no se toma en cuenta aspectos de geometría, niveles de reflectancia ni ubicación adecuada dentro del mosaico para efectuar un ajuste correcto. Conforme a esta problemática, se decidió fabricar dianas que tomaran en cuenta estas características específicas, siendo las más óptimas las dianas que permitan la determinación del punto de control terrestre, sean visibles en el entorno de estudio y genere un ajuste que cumpla los valores máximos de error expuestos en el apartado anterior.

Primeramente, se diseñaron dos tipos de geometrías internas para las dianas "Cuadros Completos" y "Cruz". Estas fueron confeccionadas con colores de alta y baja reflectancia, correlacionándolas con los entornos seleccionados: zona urbana (carpeta asfáltica y adoquines), zona rural (zonas verdes y cancha de fútbol) y suelo mineral/pasto seco (suelo expuesto), como se observan en la tabla 1.

Por otro lado, se tomó en cuenta también el aspecto económico en la confección de las dianas, el cual es bajo, tomando en consideración que la selección errónea de un punto de control que no conserve las características expuestas anteriormente, implicaría que se deba realizar la captura de datos nuevamente, generando un sobrecosto en los proyectos fotogramétricos, lo cual justifica el costo de la fabricación y la utilización de las dianas durante el proceso de captura de imágenes con el VANT.

Tabla 1. Detalle de tipos de diana según color, entorno y nivel de Reflectancia.

Número de diana	Tipo de diseño	Dimensiones Internas (cm)	Entorno de evaluación	Colore s de diana	Tipo de Reflectancia	lmagen de diana
1	Rectangular Cruz/"Cuadros Completos"	30 x 30	Zona Rural	Rojo / Negro	Baja	
2	Rectangular Cruz/"Cuadros Completos"	30 x 30	Zona Urbana	Verde / Negro	Baja	
3	Rectangular Cruz/"Cuadros Completos"	30 x 30	Suelo Mineral/Pasto seco	Azul / Negro	Baja	
4	Rectangular Cruz/"Cuadros Completos"	30 x 30	Zona Rural	Rosado / Negro	Baja	
5	Rectangular Cruz/"Cuadros Completos"	30 x 30	Zona Rural	Rojo / Blanco	Alta	
6-7	Rectangular Cruz/"Cuadros Completos"	30 x 30	Zona Urbana	Negro / Blanco	Alta-Baja	

8	Rectangular Cruz/"Cuadros Completos"	30 x 30	Zona Urbana	Amarillo / Negro	Baja	
9	Rectangular Cruz/"Cuadros Completos"	30 x 30	Suelo Mineral/Pasto seco	Azul / Blanco	Alta	
10	Rectangular Cruz/"Cuadros Completos"	30 x 30	Zona Rural	Rosado / Blanco	Alta	
11	Rectangular Cruz/"Cuadros Completos"	30 x 30	Zona Urbana	Amarrill o / Blanco	Alta	
12	Rectangular Cruz/"Cuadros Completos"	30 x 30	Suelo Mineral/Pasto seco	Verde / Blanco	Alta	

Fuente: Elaboración Propia, 2018.

Material	Cantidad	Costo unitario (en colones)	
Cinta adhesiva	3	4895	
Brocha	2	6350	
Lámina de Plywood	2	9595	
122x244x0.5	_		
Pintura 1	7	6250	
Monto Total para 24 diar	102824.97		
Monto promedio por dia	4284.37		

Tabla 2. Detalle de costos para la creación de diana

Fuente: Elaboración propia (montos obtenidos de EPA-Ferretería Segura), 2018.

4.1.2. Diseño de un algoritmo para colocar los puntos de control terrestre en la imagen, a partir de los valores de píxel de la diana en el terreno

El algoritmo que se requiere implementar para la colocación automática de los puntos de control a partir de los valores de píxel, debe ser capaz de determinar mediante un conjunto de operaciones matriciales y estadísticas, la posición probable del punto de control de la forma más precisa y exacta posible. Para determinar esta posición, se desarrolló un algoritmo compuesto por filtros de búsqueda, utilizados para definir valores de píxeles que lograran el cumplimiento de ciertas condiciones, mediante las cuales se excluyeran los datos que no correspondieran a las posiciones de las dianas desde el enfoque de valores de píxel.

Inicialmente a partir de la imagen de una diana extraída del ortomosaico, se generó una transformación de la misma en un arreglo matricial, asignando a los valores de píxel en el modelo RGB, una posición i (filas), j (columnas) y descomponiéndola en un arreglo matricial único para cada canal del modelo RGB y así poder realizar el análisis de los parámetros de manera individual. De esta forma fue posible determinar los valores asociados a las dianas, como lo son el valor de píxel máximo y mínimo por cuadrante que comprenden la diana según su color, desviación estándar y valor promedio de los mismos (Ver ecuaciones 10 y 11); todos estos

valores serán datos nominales de la diana, utilizados por los filtros de búsqueda para determinar la posiciones de las mismas.

$$\bar{X} = \frac{\sum X_i}{N}$$

Ec. (9)

Dónde: \overline{X} = Promedio

Xi= Datos de estudio

N= Cantidad total de datos

Fuente: Cervantes-Hernández, 2008.

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2}$$
Ec. (10)

Dónde: σ = Desviación Estándar Poblacional

N= Tamaño de la población

 y_i = Valor de la variable de nivel digital

 \bar{y} = Media poblacional

i = Subíndice correspondiente a la unidad i-ésima de la población {1,2..., i, ...N}

Fuente: Espejo, 2017.

A continuación se procedió a diseñar el primer filtro de búsqueda, el cual consiste en la extracción de posiciones específicas de la matriz de la imagen completa, restringiendo esta búsqueda a las posiciones de los píxeles que se encuentren separados entre sí de igual forma a la separación existente en las posiciones de los extremos de la diana; en este caso de estudio esta separación fue de 30 píxeles por 30 píxeles (tamaño de la diana) y se utilizaron las ecuaciones expuestas dentro de la figura 17. Además, se obtuvieron los valores de píxel contenidos en estas posiciones de la matriz de la imagen completa. Consecuentemente se realizaron diferencias matemáticas entre los valores de píxel de los extremos del tamaño de la diana encontrados anteriormente, como se observa en la ecuación 12; estas diferencias se presentan como un valor absoluto.

Figura 17. Conjunto de Ecuaciones de determinación de valores de píxel puntuales de la diana. Fuente: Elaboración propia, 2019.

Fuente: Elaboración propia, 2019.

Como siguiente etapa del primer filtro, se efectuó la comparación entre las diferencias encontradas anteriormente y los valores nominales de la diana mediante tres operaciones condicionales. La primera condición consiste en que las diferencias calculadas (ecuación 13) deben mantenerse en un rango del valor

promedio ± la desviación estándar (ver ecuación 14); en caso de cumplirse, se prosigue con la segunda condición. Esta condición consiste en que los valores de píxel determinados por las posiciones de los extremos de la geometría de la diana deben mantenerse en un rango entre los valores máximos o mínimos de píxel por cada cuadrante (por color) establecidos según los valores nominales de la diana de estudio (ver ecuación 15); en caso de cumplirse, se aplica la tercera condición, la cual se observa en la ecuación 16.

Posteriormente, si al iterar sobre la matriz resultante de la imagen completa de estudio, se determina que un conjunto de píxeles cumplen con las condiciones anteriormente descritas, se almacenará la posición media entre estos píxeles en una nueva matriz de posiciones; esto se realizará de forma individual para cada canal del modelo RGB.

Cabe destacar que al ser píxeles específicos los que se utilizan para realizar este primer filtro, permite que el proceso de búsqueda sea rápido y eficiente y con la sensibilidad necesaria para determinar un primer conjunto de posibles posiciones del centro de las dianas.

Condiciones Estadísticas 1:

Promedio – Desviación Est. < Diferencia 1 < Promedio + Desviación Est. Promedio – Desviación Est. < Diferencia 2 < Promedio + Desviación Est.

Ec. (12)

Fuente: Elaboración propia, 2019.

Condiciones Estadísticas 2:

V alor mínimo Cuadrante Baja Reflectancia <píxel 1<Valor máximo Cuadrante Baja Reflectancia Valor mínimo Cuadrante Baja Reflectancia<píxel 4<Valor máximo Cuadrante Baja Reflectancia Valor mínimo Cuadrante Alta Reflectancia<píxel 3<Valor máximo Cuadrante Alta Reflectancia Valor mínimo *Cuadrante Alta Reflectancia* <píxel 2<Valor máximo *Cuadrante Alta Reflectancia*

Ec. (13)

Condiciones Estadísticas 3:

Valor mínimo Cuadrante Baja Reflectancia <píxel 3<Valor máximo Cuadrante Baja Reflectancia Valor mínimo Cuadrante Baja Reflectancia <píxel 2<Valor máximo Cuadrante Baja Reflectancia Valor mínimo Cuadrante Alta Reflectancia<píxel 1<Valor máximo Cuadrante Alta Reflectancia Valor mínimo Cuadrante Alta Reflectancia<píxel 4<Valor máximo Cuadrante Alta Reflectancia

Ec. (14)

Fuente: Elaboración propia, 2019.

Para el segundo filtro, se realiza la búsqueda de datos de posiciones de píxeles en las matrices resultantes del primer filtro, considerando para esto un rango de búsqueda de los datos en unidades de píxel. Para esta búsqueda se propuso definir un rango de tres veces el tamaño de píxel (Límite=3), representando el 10% del tamaño total de la diana colocada en el terreno para la resolución espectral de la imagen de estudio.

Por lo tanto, por medio de la ecuación 16 se determinó la distancia en píxeles entre los valores de posición determinados para la matriz del canal rojo (R) con respecto a los valores de posición determinados para la matriz del canal verde (R).

Posteriormente se ejecutó una primera ecuación condicional, en la cual si el resultado de la ecuación 16 es menor al Límite propuesto (ver ecuación 17), se prosigue con la siguiente operación, definida por la ecuación 18. Por medio de esta ecuación se determinará la distancia existente entre una posible posición de la diana de estudio en la matriz del canal rojo (R) con respecto a la posición de la diana de estudio en la matriz del canal azul (B). Seguidamente, se ejecuta la segunda ecuación condicional (ver ecuación 19), en la cual si el resultado obtenido a partir de la ecuación 18 es menor al Límite propuesto, se promediarán las columnas y las filas que cumplan con esta restricción del límite de 3 valores de píxel.

De esta forma, si la posición del centro de una posible diana, se repite en las tres matrices y se encuentra en el rango de búsqueda establecido, se indica que esa posición corresponde al centro de una diana.

$$Limite1 = ((Fila_R - Fila_G)^2 + (Columna_R - Columna_G)^2)^{\frac{1}{2}}$$

Ec. (15)

Fuente: Elaboración propia, 2019.

Límite 1 < *Límite*

Ec. (16)

Fuente: Elaboración propia, 2019.

$$Limite2 = ((Fila_R - Fila_B)^2 + (Columna_R - Columna_B)^2)^{\frac{1}{2}}$$
Ec. (17)

Fuente: Elaboración propia, 2019.

Límite 2 < *Límite*

Ec. (18)

Fuente: Elaboración propia, 2019.

La lista resultante de la etapa anterior debe ser filtrada nuevamente para eliminar posibles posiciones semejantes, para lo cual se diseñó una función de búsqueda de valores de posición [i] [j] semejantes o cercanos. Como se observa en la ecuación 20, esta función realiza la resta de cada valor de posición de la lista con los demás valores de la misma, de esta forma si dos o más valores de posición se encuentran dentro del rango de búsqueda establecido, se promediarán para obtener un único valor de posición; se considerará el rango de búsqueda como la mitad del tamaño de la diana. En caso de que el dato evaluado no cuente con ningún valor cercano o similar se eliminará de la lista, ya que se considera como un valor ruido del proceso.

Función Filtrar:

$$|(i_n - Coord.x) \& (j_n - Coord.y)| \le \frac{Tamaño Diana}{2}$$

Ec. (19)

Donde:

i= Valor de posición de fila del píxel evaluado.

j= Valor de posición de columna del píxel evaluado.

n = Valor consecutivo de filas o columnas en las entradas de la lista.

Coord. x = Valor de posición del píxel en la fila de la lista filtrada

Coord.y = Valor de posición del píxel en la columna de la lista filtrada

Fuente: Elaboración propia, 2019.

Finalmente, para el tercer y último filtro del algoritmo se utilizará toda la matriz general de la imagen de estudio, generando para esto una matriz con Tuplas que contengan los valores de los canales individuales R, G y B.

Para este proceso se contará además con un núcleo o bloque de tamaño conocido, el cual a su vez se dividirá en cuatro sectores independientes los cuales comprenderán los conjuntos de datos correspondientes a píxeles de alta y baja reflectancia, homologando así el diseño de la diana de Cuadros Completos (ver figura 18). Este núcleo permitirá realizar el análisis estadístico en un conjunto de datos específicos en la matriz general, realizando una resta matemática entre los valores de mayor y menor reflectancia, tanto de forma horizontal como vertical; este paso supone que en caso de ser una diana la que se está evaluando, el valor resultante de la resta de los subconjunto deberá tender a cero; sin embargo debido a que el comportamiento de los datos de valores de píxeles no se comportan de forma absoluta como valores de cero para los valores de baja reflectancia o de 255 para valores de alta reflectancia según cada color, es necesario determinar el valor mínimo a la cual tenderá la resta matemática de los núcleos, para esto se realizó la suma de los residuos al cuadrado y se determinó así el valor mínimo que deberá cumplir la resta de los núcleos y en caso de no ser así, ésta no sería una diana y por lo tanto el valor de posición se elimina de la lista (ver figura 19).

Es importante considerar que las posiciones a evaluar son las generadas en la lista del segundo filtro, por lo que esta búsqueda no se está realizando a toda la matriz, sino a los centros previamente filtrados. Asimismo, se debe tener en cuenta que el objetivo de esta fase del filtro es utilizar los valores conocidos de la diana y los valores específicos de la geometría interna de la diana, Cuadros Completos, para descartar todos aquellos objetos que hasta este momento se detectan como una posible diana sin embargo no lo son.

Como última etapa del tercer filtro, se aplica la Función Filtrar mencionada en la ecuación 20, con la finalidad de reducir la cantidad de posibles centros de la diana a un valor mínimo y almacenar en una nueva lista las posibles posiciones de centros de diana.

Figura 18. Extracción de datos por cuadrantes. Fuente: Elaboración propia, 2019.

RESTA = BLOQUE 1- BLOQUE 2 + BLOQUE 3 - BLOQUE 4

Figura 19. Análisis de la diana en cuadrantes. Fuente: Elaboración propia, 2019.

4.1.3. Programación de un algoritmo para determinar el punto de control terrestre en la imagen, a partir de los valores de píxel de la diana en el terreno

La programación del algoritmo se basó en el lenguaje de programación Python, y el entorno de desarrollo interactivo (IDE por sus siglas en inglés) Pycharm. Se seleccionaron estas dos opciones por la facilidad de integrar módulos matemáticos estadísticos y la facilidad de utilizar la librería GDAL, necesaria para el análisis de grandes cantidades de datos Ráster, considerando que la cantidad de píxeles de estudio es de 108 000 000 de píxel, en los cuales se realizará el estudio de caso. En la figura 20 se muestra un diagrama de flujo de los procesos programados que componen al algoritmo automático de determinación de puntos de control terrestre en la imagen a partir de valores de píxel y en el Anexo G, se muestra el código de programación creado para esta finalidad.

Figura 20. Diagrama de Flujo de Algoritmo automático de determinación de puntos de control terrestre en la imagen a partir de valores de píxel. Fuente: Elaboración propia, 2019.

Como se observa en la figura anterior, el código de programación realizado recibe como datos de entrada la extracción de la diana de estudio de la ortofoto, esto para realizar el análisis estadístico para la obtención de valores promedio de las diferencias entre los valores máximos y mínimos, desviación estándar, valores máximos y mínimos correspondientes a los píxel que la conforman; estos datos serán los parámetros de evaluación para el primer filtro, observados en la siguiente tabla.

Color	Promedio	Desviación Estandar	Máximo Oscuro	Mínimo Oscuro	Máximo Claro	Mínimo Claro
RED	113	40	180	75	255	200
GREEN	102	22	180	94	228	202
BLUE	46	16	169	62	169	113

Tabla 3. Valores nominales de píxel de la diana evaluada.

Fuente: Elaboración propia, 2019.

Posteriormente, se realiza la extracción de las valores de píxel que conforman la ortofoto de análisis utilizando la librería GDAL, ya que esta herramienta cuenta con la capacidad de extracción de grandes cantidades de datos desde un elemento Raster. Estos datos fueron almacenados en formato de valores delimitados por coma (CSV por sus siglas en inglés) en una ubicación conocida y en una estructura de matrices individuales para cada canal que conforma el modelo RGB (ver figura 21).

- 4	Α	В	С	D	Е	F	G	Н	I	J	К	L	М	N
1	202	217	224	221	218	218	215	212	205	210	215	211	205	192
2	206	220	227	224	223	225	222	221	214	215	220	221	225	206
3	204	218	223	220	220	221	220	220	221	216	219	224	232	214
4	208	220	225	221	220	221	219	219	219	216	218	223	230	213
5	210	222	226	223	222	222	218	217	217	218	223	227	231	210
6	208	218	223	221	221	219	216	215	219	216	220	225	228	209
7	212	221	224	222	222	221	218	220	220	215	218	221	226	208
8	212	220	222	220	220	218	216	218	218	218	224	229	230	208
9	212	221	222	222	219	220	224	221	219	217	223	226	225	204
10	212	220	221	220	220	220	225	223	219	216	221	226	227	203
11	214	220	219	219	218	218	223	220	227	221	223	226	227	205
12	222	226	225	228	227	224	225	221	228	223	225	227	225	198
13	216	222	224	232	233	229	230	227	224	226	232	232	228	204
14	176	183	189	202	206	204	206	207	208	212	215	212	218	217
15	124	132	138	151	155	154	160	163	167	168	166	164	186	216
16	98	103	107	118	121	117	124	129	132	134	133	133	166	211
17	104	95	103	109	103	104	113	112	114	111	111	120	161	212
18	107	99	102	106	98	98	104	104	111	105	102	112	155	209
19	114	108	110	113	106	105	112	112	110	102	98	109	155	210
20	111	108	111	114	109	108	113	113	112	107	104	115	160	213
21	108	109	110	113	108	105	107	107	114	110	108	118	162	215
22	108	112	113	114	112	110	110	110	114	109	106	114	159	214
23	103	108	109	109	110	109	109	112	114	108	102	112	158	217
24	103	108	107	106	107	107	107	111	114	107	103	113	162	220
25	114	104	103	108	105	104	108	113	111	104	100	113	162	219
26	113	103	97	98	95	94	98	101	104	100	100	113	161	219
27	136	125	117	113	110	112	114	114	101	99	101	113	159	214
28														

Figura 21. Extracto de la matriz correspondiente a la diana en el canal verde (G). Fuente: Elaboración propia, 2019.

Una vez determinados los valores de entrada necesarios para ejecutar el código programado, se procedió con el conjunto de funciones que comprenden el primer filtro del algoritmo. El primer filtro utilizó las ecuaciones 12-17 y la figura 17 para iterar a lo largo de las matrices R, G y B y de esta forma determinar cuáles posiciones cumplen con los parámetros estadísticos definidos en el algoritmo.

De este primero filtro se puede apreciar en la figura 22 que la cantidad de valores encontrados es de 12946, los cuales si bien constituyen una disminución con respecto al total de datos iniciales, aún continúan siendo una gran cantidad de posiciones probables. No obstante, este primer filtro se define como exitoso, ya que permite la reducción de datos a un 0.01199% del total de los datos iniciales, logrando realizar una pequeña evaluación comparativa en las matrices, buscando valores que se asemejen a la diana con una mayor rapidez de búsqueda y sensibilidad requerida.

Por lo tanto, este primer filtro permite que el segundo filtro se base en una lógica de búsqueda más sensible y por ende realice una reducción mayor de las posibles

posiciones de los centros de las dianas, ya que cuenta con los datos generados en el primer filtro para ser utilizados como valores de entrada.

```
E:\2018\FINCA_3_TESIS\Insumo_Gdal\venv\Scripts\python.exe F:/CODIGO/SCRIPT/TFG-ESC_GRISES_10-TESIS_ESCRITO.py
('[ NUMERO DE BANDAS DE RASTER ]: ', 3)
('[ OBTENIENDO DATOS DE BANDA ]: ', 1)
[ DATOS ESTADISTICOS DE LA BANDA ] = Minimum=1.000, Maximum=255.000, Mean=124.206, StdDev=60.897
('[ OBTENIENDO DATOS DE BANDA ]: ', 2)
[ DATOS ESTADISTICOS DE LA BANDA ] = Minimum=1.000, Maximum=255.000, Mean=145.129, StdDev=53.379
('[ OBTENIENDO DATOS DE BANDA ]: ', 3)
[ DATOS ESTADISTICOS DE LA BANDA ] = Minimum=0.000, Maximum=255.000, Mean=114.949, StdDev=63.574
(12946, 2)]
```

Figura 22. Cantidad de datos generados automáticamente en el primer filtro para el canal R (rojo). Fuente: Elaboración propia, 2019.

En el segundo filtro el código debe iterar a lo largo de la lista resultante del primer filtro y a su vez determinar que 12940 posiciones no se refieren a una diana, ya que no cumplen con las ecuaciones condicionales 16-20. Por consiguiente, como se puede apreciar en la tabla 4, este filtro reduce la cantidad de posibles posiciones de los centros de las dianas a 26, definiéndose como un 0.0000241% de los datos iniciales.

Es a partir de este segundo filtro, que se observa que la posición del centro de la diana es determinada con un margen de error menor al tamaño de píxel.

Tabla 4. Valores finales de las posibles posiciones de la diana encontrados automáticamente
aplicando el segundo filtro de búsqueda.

Numero	Columnas[j]	Filas [i]	Detalle
1	431	11944	Ruido
2	778	6153	Ruido
3	906	12653	Ruido
4	939	9749	Cento de Diana
5	972	11256	Ruido
6	985	11276	Ruido
7	998	11288	Ruido
8	1016	11311	Ruido
9	1031	11329	Ruido
10	1048	11349	Ruido
11	1070	11377	Ruido
12	1079	11386	Ruido
13	1096	11404	Ruido
14	1113	11428	Ruido
15	1187	9950	Ruido
16	1435	9162	Ruido
17	1482	9103	Ruido
18	1493	7200	Ruido
19	1532	7257	Ruido
20	1563	7347	Ruido
21	2643	9186	Ruido
22	3109	12833	Ruido
23	4227	6639	Ruido
24	5947	4804	Ruido
25	6710	7778	Ruido
26	6779	7984	Ruido

Fuente: Elaboración propia, 2019.

Por último, el tercer filtro recibe como datos de entrada toda la matriz completa RGB y la lista de posiciones [i] [j] generadas en el segundo filtro; al ser una cantidad aún menor que la generada en el primero filtro, se estableció un algoritmo de búsqueda aún más sensible.

Este tercer filtro evalúa en las posiciones resultantes del segundo filtro, utilizando para esto los parámetros de la geometría de la diana de Cuadros Completos, y al conocer los valores estadísticos de cada cuadrante, determina si estos valores representan a la diana. Posteriormente, estos valores se almacenan en una nueva lista final con los datos filtrados que se determinaron según el algoritmo diseñado.

Se debe considerar que la lista final de posibles centros de diana comprende la cantidad de 23 posibles centros, lo cual representa el 0.0000213% del total de los datos iniciales. Al igual que en el segundo filtro, la posición de la diana es determinada con una precisión menor a un píxel; sin embargo al este último filtro utilizar el parámetro de la geometría de la diana, reduce en 23 valores la lista conformada, como se observa en la tabla 5.

Finalmente cabe mencionar que si bien se logró determinar posiciones de diferentes elementos, entre estos la posición correcta de la diana, el algoritmo y su desarrollo programado no cumplen con la exactitud requerida para ser utilizados en trabajos fotogramétricos con UAV y cámaras no métricas, ya que finalmente se determinan 22 elementos ruido los cuales no corresponden al centro de la diana.

Numero	Columnas[j]	Filas [i]	Detalle
1	431	11944	Ruido
2	778	6153	Ruido
3	906	12653	Ruido
4	939	9749	Cento de Diana
5	972	11256	Ruido
6	991	11282	Ruido
7	1023	11320	Ruido
8	1048	11349	Ruido
9	1074	11381	Ruido
10	1096	11404	Ruido
11	1113	11428	Ruido
12	1187	9950	Ruido
13	1435	9162	Ruido
14	1482	9103	Ruido
15	1493	7200	Ruido
16	1532	7257	Ruido
17	1563	7347	Ruido
18	2643	9186	Ruido
19	3109	12833	Ruido
20	4227	6639	Ruido
21	5947	4804	Ruido
22	6710	7778	Ruido
23	6779	7984	Ruido

Tabla 5. Valores finales de las posibles posiciones de la diana encontrados automáticamente, aplicando el tercer filtro.

Fuente: Elaboración propia, 2019.

Por otro lado, se puede apreciar en las imágenes 23-24-25-26 de la ubicación exacta de la diana de estudio y además algunos ejemplos de la lista de posibles centros de la diana provenientes del tercer filtro, los cuales demuestran que los valores ruido determinados por los tres filtros del algoritmo pueden representar tanto elementos constructivos similares a la diana, como elementos que cumplen con las condiciones estadísticas aunque no representan ninguna similitud con la diana evaluada, o de la misma forma, elementos móviles que poseen características similares a la diana. Estas imágenes de muestra fueron expuestas en un formato de imagen de canal R (rojo) por su facilidad de contraste y visualización con el color de la diana de estudio.

Figura 23. Ubicación exacta del centro de la diana de estudio (posición No 4), encontrada automáticamente por el código de programación. Fuente: Elaboración propia, 2019.

Figura 24. Ubicación de posible centro de la diana de estudio (posición ruido No 8), encontrado automáticamente por el código de programación. Fuente: Elaboración propia, 2019

Figura 25. Ubicación de posible centro de la diana de estudio (posición ruido No 17), encontrado automáticamente por el código de programación. Fuente: Elaboración propia, 2019.

Figura 26. Ubicación de posible centro de la diana de estudio (posición ruido No 23), encontrado automáticamente por el código de programación. Fuente: Elaboración propia, 2019.

4.1.4. Determinación del software más óptimo para la colocación de los puntos de control terrestre en la imagen, a partir de valores de píxel

De acuerdo al proceso de investigación bibliográfica de los software existentes en el mercado dedicado al Ajuste Fotogramétrico de Imágenes Aéreas con Sistemas Aéreos No Tripulados, se generó una tabla resumen de los datos presentados en el Anexo E, en la que se puntualizaron las características y observaciones acerca de cada uno de estos.

A pesar de que no se logró encontrar un software que cumpliera con todas las especificaciones propuestas en esta investigación, se eligieron dos de los software con mayor cumplimiento de los mismos, OpenDroneMap y Agisoft PhotoScan Professional, los cuales se observan en la siguiente tabla.

Tabla 6. Software de ajuste fotogramétrico más óptimos para la investigación.

Nombre de Software	Tipo de Licenciamiento	Capacidad de Corrección por GCP	Observaciones	Dirección de Origen
Open Drone Map Photogrammetry software	Programable- Descargable Gratuito y Pago.	Sí.	 -Procesamiento local. -Solamente realiza correcciones con el Sistema de Coordenadas WGS84. -Buen grado de configuración de procesos manuales. -Para efectuar el ajuste se debe tener el valor i,j de cada una de las imágenes en las que se evidencie el GCP. 	https://www.opendrone map.org/webodm/
Agisoft PhotoScan Professional	Descargable Pago.	Sí.	 Procesamiento local. Flujo de trabajo muy sencillo. Permite utilizar correcciones con el Sistema de Coordenadas CRTM05. Control del usuario paso a paso. Capacidad de parametrización de cámara. Capacidad de extraer datos de puntos de control directamente del software mediante apreciación de la ortofoto. 	http://www.agisoft.com/

Fuente: Elaboración Propia, 2018.

El software OpenDroneMap tiene la ventaja de poder escogerse si se desea licenciamiento pago o licenciamiento gratuito y descargable y permite el uso de

puntos de control terrestre; sin embargo, presenta la característica de que no utiliza la selección de puntos de control mediante la apreciación de las dianas sobre el terreno, sino una conversión de posición de las dianas de los valores norte-este a valores i, j sobre la imagen. Es por esta razón por la cual se descarta para ser utilizado en el desarrollo de esta investigación, ya que crea un proceso más complicado, fomentando a un incremento en tiempos de ejecución.

Por otro lado, el software Agisoft PhotoScan Professional, a pesar de tener la desventaja de ser de licenciamiento pago, es uno de los más utilizados en el país. Además, ofrece la ventaja de tener la capacidad de realizar ajustes personalizados en todas las etapas del proceso, con lo cual no se delega el criterio del procesamiento a una programación rígida. Por otra parte, ofrece un procesamiento local y permite la selección de puntos de control por parte del usuario a partir de las imágenes, además de permitir extraer la información correspondiente a los puntos de chequeo directamente del software sin necesidad de involucrar más programas en el flujo de trabajo. Por lo tanto, de acuerdo a sus características favorables, se elige este software como el más óptimo para ser usado en la investigación.

4.1.5. Comprobación de la exactitud alcanzada en la colocación de puntos de control terrestre en la imagen mediante el estudio del caso práctico Finca 3: Instalaciones Deportivas de la Universidad de Costa Rica

El estudio de caso se realizó en Finca 3, Instalaciones Deportivas de la Universidad de Costa Rica, iniciando con la etapa de planificación, en la cual se diseñó el plan de vuelo para la captura de los datos, mediante el software de escritorio de Drone Deploy a alturas medidas desde el punto de despegue del VANT de 120m, 100m y 80m para cada tipo de diana, para un total de seis vuelos. Estos vuelos se programaron con un traslape lateral de las imágenes de 60% y un solape de 70% (ver figuras 27 y 28). Además se realizó una ficha técnica para cada una de las dianas, en las cuales se muestran algunos de los datos más importantes del proceso de captura, es importante considerar las condiciones meteorológicas, ya

que en caso de tener ráfagas de viento mayores a 7 m/s el equipo puede no mantener las líneas de vuelo programado y por ende obtener resultados no fiables (ver figuras 29 y 30).

Figura 27. Diseño de Plan de Vuelo en software DroneDeploy. Fuente: DroneDeploy- Elaboración Propia, 2018.

Figura 28. Diseño de Plan de Vuelo en software DroneDeploy. Fuente: DroneDeploy- Elaboración Propia, 2018.

FICHA TÉCNICA DE CAPTURA DE DATOS CON SISTEMAS AÉREOS NO TRIPULADOS						
Fecha	Junio/15/201	Junio/15/2018				
Proyecto	Trabajo F	Trabajo Final de Graduación				
Ubicación	Provincia Cantón Distrito Barrio	San José Montes de Oca Sabanilla UNED				
Descripción del proyecto	Vuelo prog Costa Rica, geometría	gramado en finca 3: Instalaciones deportvas de la Universidad de para determinar las precisiones y evaluar la calidad de diferentes s de dianas y determinar la facilidad para apreciar las mismas en diferentes entornos.				
Información de piloto		Alberto Calderón Sánchez				
Información de UAV		DJI, Phantom 4 PRO				
Información de sensor		1" CMOS, 20 Megapixeles				
Tipo de diana utilizada		"Cuadros Completos"				
Condición metereológica	Condicio	nes despejadas, con viento de 1 m/s y rafagas de hasta 3 m/s				
Información Adicional	Se realizaron 100	n 3 vuelos con diferentes alturas de vuelos programadas: de 80m, m y 120m, con la misma altura de partida en el terreno.				

Figura 29. Ficha Técnica 1 de Captura de datos con Sistemas Aéreos No Tripulados. Fuente: Elaboración Propia, 2018.

Fecha	Junio/18/20	18
Proyecto	Trabajo	Final de Graduación
Ubicación	Provincia Cantón Distrito Barrio	San José Montes de Oca Sabanilla UNED
Descripción del proyecto	Vuelo pro Costa Rica, geometría	gramado en finca 3: Instalaciones deportvas de la Universidad de , para determinar las precisiones y evaluar la calidad de diferentes as de dianas y determinar la facilidad para apreciar las mismas en diferentes entornos.
Información de piloto		Alberto Calderón Sánchez
Información de UAV		DJI, Phantom 4 PRO
Información de sensor		1" CMOS, 20 Megapixeles
Tipo de diana utilizada		"Cruz"
Condición metereológica	Condicio	ones despejadas, con viento de 1 m/s y rafagas de hasta 3 m/s

Figura 30. Ficha Técnica 2 de Captura de datos con Sistemas Aéreos No Tripulados. Fuente: Elaboración Propia, 2018. Consecutivamente, se llevó a cabo el proceso de captura de datos en el cual se inició con la colocación de las diferentes dianas y la realización del vuelo, en el cual para un área total de 22.4ha, se recabaron: 210 imágenes a 80m de altura; 131 imágenes a 100m de altura y 101 imágenes a 120m de altura. Esto implica que a mayor altura de vuelo existe una optimización del tiempo en la captura de los datos con el VANT, ya que para áreas de estudio iguales, se requieren menos líneas de vuelo, esto debido a que el campo de visión del sensor (FOV) se incrementa con la altura de vuelo.

Al finalizar los vuelos, se procedió a realizar la medición de los puntos de control (centros de las dianas) y puntos de chequeo con equipo de medición GNSS, realizándose con una configuración RTK. En total se efectuó la medición de 33 puntos de chequeo y de 24 puntos de control.

Se realizó el ajuste de los datos obtenidos por las antenas GNSS, con la finalidad de que el presente proyecto mantenga coordenadas oficiales del país al momento de las mediciones, Costa Rica Transversal de Mercator del 2005. Para esto se descargaron los archivos de ubicaciones de las estaciones de referencia de operación continua (CORS por sus siglas en inglés) del Registro Nacional de la Propiedad de la República de Costa Rica y se hizo el ajuste utilizando el software de ajuste geodésico Topcon Tools, obteniendo las coordenadas ajustadas de los puntos de chequeo medidos (ver Anexo F), coordenadas ajustadas de los puntos de control terrestre (ver Anexo H), precisiones horizontales y verticales, así como las coordenadas ajustadas norte, este y elevación del punto de ocupación base para el levantamiento RTK (Ver tabla 7 y 8).

Nombre del Punto	Norte (m)	Este (m)	Elevación Ortométrica(m)	
Base_1	1099662.07262	495007.93071	1249.29823	
LIMN	1105137.38764	606744.52717	39.73139	
RIDC	1096861.84450	494619.02627	1226.85072	
PUNT	1103633.46311	408765.46020	38.58512	

Tabla 7. Coordenadas ajustadas del punto de ocupación base y las estaciones de operación continua.

Fuente: Elaboración Propia, 2018.

Tabla 8. Precisiones del punto de ocupación base con respecto a las estaciones de operación

Nombre del Punto	Precisión	Precisión
	Horizontal(m)	Vertical(m)
Base_1-LIMN	0.02447	0.04418
Base_1-PUNT	0.01783	0.04241
Base_1- RIDC	0.00172	0.00410

continua.

Fuente: Elaboración Propia, 2018.

De acuerdo a la Directriz RIM-001-2012 la tolerancia máxima para este tipo de levantamientos en la exactitud relativa de las coordenadas es de ±6cm por lo cual se determina que los valores de precisiones que se muestran en la tabla anterior número 8, se encuentran dentro del rango aceptable del ajuste para la base utilizada (Rodríguez, 2012, Directriz RIM-001-2012, p.4).

Posterior a la captura de todos los datos de campo, tanto GNSS como imágenes por parte del sensor aerotransportado, se realizó el ajuste de las imágenes utilizando el software fotogramétrico Agisoft PhotoScan Professional, mediante el flujo de trabajo expuesto en la figura 31, logrando obtener como resultado final la ortofoto (ver figura 32) y las coordenadas de los puntos de chequeo sobre la ortofoto, las cuales se muestran en el Anexo H.

Figura 31. Diagrama de flujo de procesamiento en software de ajuste fotogramétrico. Fuente: Elaboración propia, 2018.

Figura 32. Ortofoto obtenida del procesamiento en el software de ajuste fotogramétrico. Fuente: Elaboración propia, 2018.

Posterior a la determinación y extracción de los valores Norte (N), Este (E) y Elevación (h) de los puntos de chequeo mediante la ortofoto, se procede a realizar el cálculo de las diferencias de estas coordenadas y las coordenadas Norte (N), Este (E) y Elevación (h) de los mismos puntos obtenidos con el equipo de medición GNSS, las cuales se ven reflejadas en el Anexo H. La siguiente tabla resumen muestra los valores promedio de las diferencias para cada componente de la coordenada, las cuales varían dependiendo de la altura de vuelo. Se puede observar que los valores máximos para las componentes Norte, Este y Elevación no superan los 0.0713m, 0.0708m y 0.3171m respectivamente, y como valores
mínimos para las componentes Norte, Este y Elevación se encuentran 0.0036m, 0.0038m y 0.0078m, respectivamente.

Tipo de Geometría de diana	Altura de Vuelo	Nivel de Reflectancia	Diferencia promedio en componente N (m)	Diferencia promedio en componente E (m)	Diferencia promedio en componente h (m)
		Alta	-0.0088	0.0049	0.2135
	80m	Baja	-0.0049	0.0149	0.2092
		Alta-Baja	-0.0077	0.0145	0.2114
"Our a drag a		Alta	-0.0574	0.0021	0.1683
"Cuadros Completos"	100m	Baja	-0.0210	0.0170	0.1720
Completos		Alta-Baja	-0.0470	0.0050	0.1570
	120m	Alta	-0.0153	0.0141	0.1352
		Baja	-0.0153	0.0137	0.1321
		Alta-Baja	-0.0252	0.0043	-0.0117
		Alta	-0.0095	0.0220	0.0630
	80m	Baja	-0.0529	0.0713	0.0497
		Alta-Baja	-0.0157	0.0372	0.0078
		Alta	0.0129	0.0338	0.1493
"Cruz"	100m	Baja	-0.0038	0.0538	0.1806
		Alta-Baja	-0.0255	0.0043	0.0825
		Alta	-0.0167	-0.0036	0.2943
	120m	Baja	0.0708	0.0144	0.3171
		Alta-Baja	-0.0113	-0.0119	0.1336

Tabla 9. Comparación de las diferencias promedio entre los puntos de chequeo medidos en campo y puntos de chequeo obtenidos de la imagen en las componentes Este-Norte-Elevación.

Fuente: Elaboración propia, 2018.

De acuerdo a los datos obtenidos, se observa que el desempeño de las dianas fue favorable bajo la metodología de fabricación expuesta, considerando su geometría, entorno y niveles de reflectancia, ya que conlleva a que la precisión obtenida en los datos de muestreo sea adecuada para la restitución fotogramétrica.

4.1.5.1. Comprobación de la exactitud alcanzada en la colocación de puntos de control terrestre mediante el Test NSDDA

Por otro lado, se utilizó el Test NSDDA para establecer las precisiones en la componente horizontal y vertical de las diferencias entre los puntos de chequeo medidos con GNSS y los puntos de chequeo obtenidos de la ortofoto, por medio del Error Medio Cuadrático, y posteriormente, determinar el Coeficiente de Exactitud Posicional.

Finalmente por medio de la tabla 10, se realizó la comparación entre la precisión de cada coordenada utilizando el cálculo de la media cuadrática o RMS. De la misma se evidencia que el valor mínimo para el RMSE_y es de 0.00326m y para el RMSE_x es de 0.00472m, estos valores corresponden a la altura más baja de vuelo y es consistente con el hecho de que la ortofoto a esta altura cuenta con la mejor resolución espacial (cm/píx); en contraposición los valores máximos de RMSE corresponden a la mayor altura de vuelo con valores RMSE_y de 0.02933m y RMSE_x de 0.01782m. Sin embargo, todas las variaciones horizontales se encuentran dentro de la tolerancia indicada por el Registro Público de la Propiedad de la República de Costa Rica en la Directriz RIM-001-2012, en la cual se muestra que el valor de error relativo es de \pm 6 cm (Rodríguez, 2012, Directriz RIM-001-2012, p.4).

Luego de determinar que la muestra de datos se encuentra dentro de los rangos aceptables para la evaluación de las exactitudes en su componente horizontal (X-Y), se procede a realizar la evaluación de la componente vertical Z. Se estableció que la desviación estándar al 99% de confianza del conjunto de RMSE_z sería el valor máximo posible permitido para aceptar los valores como correctos; para este caso de estudio el valor correspondiente a la Desv. Estándar_z = 0.09m, es por esta razón que se define que solo dos valores no cumplen con lo establecido para esta componente, los cuáles serían el dato de RMSE_z = 0.15198m para la diana con Nivel de Reflectancia Alta-Baja con geometría de Cuadros Completos a 120m de altura y el dato de RMSE_z = 0.11315m para la diana con Nivel de Reflectancia Alta-Baja con geometría de altura, los cuales corresponden consecuentemente a los valores más altos de RMSE_z.

Tipo de	Altura de	Nivel de			
Geometría		Reflectancia	RMSE _y (m)	RMSE _x (m)	RMSE _z (m)
de diana	Vuelo	Reflectationa			
		Alta	0.00378	0.00494	0.03908
	80m	Baja	0.00326	0.00548	0.03723
		Alta-Baja	0.00360	0.00472	0.03788
"Cuadros		Alta	0.01491	0.00736	0.07093
Completos"	100m	Baja	0.01160	0.00596	0.06796
Completos		Alta-Baja	0.01393	0.00645	0.06635
		Alta	0.00804	0.00954	0.05654
	120m	Baja	0.00830	0.00980	0.05780
		Alta-Baja	0.01588	0.02108	0.15198
		Alta	0.01280	0.02800	0.04430
	80m	Baja	0.00480	0.01090	0.04680
		Alta-Baja	0.00640	0.01500	0.05910
		Alta	0.02726	0.00948	0.07944
"Cruz"	100m	Baja	0.01559	0.01121	0.08620
Gruz		Alta-Baja	0.02526	0.01463	0.11315
		Alta	0.02933	0.01782	0.08027
	120m	Baja	0.00893	0.00705	0.05459
		Alta-Baja	0.00720	0.00858	0.03713

Tabla 10. Comparación del Error Medio Cuadrático para la componente X, Y, Z, conforme a las alturas de vuelo, niveles de Reflectancia y tipo de geometría de la diana.

Fuente: Elaboración propia, 2018.

Finalmente se procede a aplicar el Test NSDDA para el control de calidad y se obtienen los resultados expuestos en la tabla 11. De la misma manera se determina que existe una relación directa entre la altura de vuelo a la que se realiza la captura de los datos y el coeficiente de exactitud posicional XY siendo que a menores alturas de vuelo se obtienen las mejores exactitudes Exactitud_r = 0.0167m y Exactitud _z = 0.07660m. Y en contraposición, las más inexactas corresponden a los valores obtenidos por medio de alturas de vuelo mayores con coeficientes máximos de Exactitud_r = 0.05719m y vertical de Exactitud _z = 0.29788m.

Se debe considerar que estos valores, tanto el de mayor como el de menor Exactitud Posicional en X y Y, se encuentran dentro del rango establecido como óptimo para el presente trabajo, considerando que la posición horizontal máxima permitida para el país es de ± 6 cm, según la Directriz RIM-001-2012 (Rodríguez, 2012, Directriz RIM-001-2012, p.4); sin embargo se debe advertir que la razón de incremento para la exactitud posicional X y Y a 120 m de altura es 3.42 veces más que la Exactitud Posicional X y Y al realizar el vuelo a 80 m de altura.

Para el caso de la componente vertical Z se determinó que la desviación estándar al 99% de confianza del conjunto de Exactitud_z sería el valor máximo posible permitido para aceptar los valores como correctos; para este caso el valor correspondiente a la Desv. Estándar_z = 0.17m, es por esta razón que se define que solo dos valores no cumplen con lo establecido para esta componente, los cuáles serían la Exactitud_z = 0.29788m para la diana con Nivel de Reflectancia Alta-Baja con geometría de Cuadros Completos a 120m de altura y la Exactitud_z = 0.22178m para la diana con Nivel de Reflectancia Alta-Baja con geometría de Cruz a 100m de altura, nuevamente el usuario final es quien define los requerimientos de precisión tanto horizontal como vertical para el test NSSDA y podría incluir estos valores en caso de así permitirlo el estudio realizado.

Tabla 11. Comparación del Error Medio Cuadrático para la componente X, Y, Z, conforme a las alturas de vuelo, niveles de Reflectancia y tipo de geometría de la diana.

Tipo de	Altura de	Nivel de		Exactitud
Geometría		Pofloctancia	Exactitud _r (m)	(m)
de diana				(11)
		Alta	0.01067	0.07660
	80m	Baja	0.01069	0.07297
		Alta-Baja	0.01018	0.07424
"Cuadros		Alta	0.02724	0.13902
Completos"	100m	Baja	0.02149	0.13321
Completes		Alta-Baja	0.02495	0.13004
		Alta	0.02153	0.11082
	120m	Baja	0.02213	0.11338
		Alta-Baja	0.04524	0.29788
		Alta	0.0499	0.0869
	80m	Baja	0.0193	0.0918
		Alta-Baja	0.0262	0.1158
		Alta	0.05719	0.15571
"Cruz"	100m	Baja	0.03280	0.16895
Oluz		Alta-Baja	0.04883	0.22178
		Alta	0.04546	0.15733
	120m	Baja	0.01956	0.10700
		Alta-Baja	0.01931	0.07277

Fuente: Elaboración propia, 2018.

4.1.5.2. Evaluación del rendimiento de las dianas con respecto a las Incertidumbres de Restitución Fotogramétrica, Niveles de Reflectancia y Geometría interna.

Un elemento de importancia en la presente investigación es la capacidad de producir dianas, que sin elevar considerablemente el costo del proyecto en el que se apliquen, generan datos de precisión y facilitan el flujo de trabajo del ajuste fotogramétrico. Una forma de evaluar el desempeño de la diana se presenta al extraer las Incertidumbres de Restitución Fotogramétrica.

Se puede apreciar cómo la Incertidumbre de Restitución Fotogramétrica debido al ajuste de la ortofoto es una función que depende del Coeficiente de Exactitud Posicional de los valores de los puntos evaluados, y es proporcional a la Resolución Espacial final del producto u ortofoto, de la cual se extrajeron los puntos evaluados. Por lo tanto, es posible determinar el comportamiento de los valores de incertidumbre existente en las restituciones realizadas en los diferentes productos fotogramétricos.

Además de este análisis, para evaluar la eficiencia de todo el flujo de trabajo se consideraron parámetros como lo son: tiempo de captura de datos, cantidad de imágenes requeridas para el proceso, tiempo de procesamiento y ajuste, precisiones y exactitudes alcanzadas, reflectancia del punto del control terrestre y facilidad para determinar este último por parte del usuario.

Reflectancia	Altura Vuelo (m)	No Fotografías	Tiempo Vuelo (min)	Tiempo Procesamiento (horas)	Resolución Espacial (cm/píx)
	80	208	12.10	1.47	2.19
Baja	100	132	9.00	0.85	2.66
	120	101	7.33	0.82	3.20
	80	208	12.10	1.40	2.19
Alta	100	132	9.00	0.88	2.66
	120	101	7.33	0.82	3.20

Tabla 12. Comparación de Parámetros de proceso, conforme a las alturas de vuelo, niveles de Reflectancia y tipo de geometría de la diana.

Fuente: Elaboración propia, 2018.

Se desprende de la tabla 12 que los valores generados para cada parámetro considerado son determinantes en el proceso completo del flujo de trabajo, permitiendo de esta forma seleccionar qué altura de vuelo es mejor para cada trabajo en particular; ya que si bien es cierto que a altura bajas de vuelo se obtienen valores de resolución espacial más pequeños y por ende se obtiene una exactitud posicional de mejor calidad, esto implica más horas de campo en captura de datos y 1.8 veces más de tiempo en el proceso de ajuste fotogramétrico.

Además como se observa en la tabla 12 y 13, se debe considerar que los vuelos realizados a baja altura (80m sobre el suelo) tienen incertidumbres de restitución menores a 0.48píx y un Coeficiente Exactitud Posicional con valores mínimos de aproximadamente una Exactitud r = 0.0102m, esto debido a que la resolución espacial para esta altura de vuelo es de apenas 2.2 cm/píx; sin embargo para abarcar toda el área de estudio se requieren de al menos 208 imágenes y un tiempo de ejecución de la captura de datos, vuelo del VANT, de 12.10 minutos.

Estos datos anteriores no representan una alta eficiencia en contraposición con los obtenidos para los vuelos de alta altura (120 m), en los cuales se tiene una duración de 7.33 minutos para capturar 101 imágenes. De igual forma, para esta altura, se muestran valores favorables de incertidumbre de restitución de aproximadamente 0.87 píx y un Coeficiente de Exactitud Posicional con valores suficientemente precisos (aproximadamente un valor de Exactitud r = 0.0196m), esto para una resolución de espacial de 3.2 cm/píx. Estos valores de Exactitud r se encuentran

dentro de los rangos aceptables conforme a la Directriz RIM-001-2012, al cumplir con el parámetro de calidad de un valor horizontal máximo permitido de ± 6.00cm (Rodríguez, 2012, Directriz RIM-001-2012, p.4).

Por lo tanto, de acuerdo a esta información, se puede evidenciar que los vuelos a 120m de altura sobre el terreno son los más eficientes considerando los parámetros establecidos, por lo que se recomienda utilizar esta configuración para la realización de este tipo de proyectos.

Tipo de Geometría de Objetivo	Altura de Vuelo	Nivel de Reflectancia	Diferencia promedio en componente Y (m)	Diferencia promedio en componente X(m)	Diferencia promedio en componente Z(m)
		Alta	-0.0088	0.0049	0.2135
	80m	Baja	-0.0049	0.0149	0.2092
		Alta-Baja	-0.0077	0.0145	0.2114
"Our days		Alta	-0.0574	0.0021	0.1683
Cuadros	100m	Baja	-0.0210	0.0170	0.1720
Completos		Alta-Baja	-0.0470	0.0050	0.1570
	120m	Alta	-0.0153	0.0141	0.1352
		Baja	-0.0153	0.0137	0.1321
		Alta-Baja	-0.0252	0.0043	-0.0117
		Alta	-0.0095	0.0220	0.0630
	80m	Baja	-0.0529	0.0713	0.0497
		Alta-Baja	-0.0157	0.0372	0.0078
		Alta	0.0129	0.0338	0.1493
"Cruz"	100m	Baja	-0.0038	0.0538	0.1806
Gruz		Alta-Baja	-0.0255	0.0043	0.0825
		Alta	-0.0167	-0.0036	0.2943
	120m	Baja	0.0508	0.0144	0.3171
		Alta-Baja	-0.0113	-0.0119	0.1336

Tabla 13. Comparación de la Incertidumbre en restitución fotogramétrica conforme a las alturas de vuelo, niveles de Reflectancia y tipo de geometría de la diana.

Fuente: Elaboración propia, 2018.

De la tabla 13 se evidencia que las diferentes configuraciones de diana, ya sea "Cuadros Completos" o "Cruz", presentan comportamientos aleatorios de desempeño según la altura de vuelo. En la siguiente tabla se observa que en el caso de la altura de vuelo de 80m, las dianas más eficientes son las del diseño de "Cuadros completos", indiferentemente de si estas son de alta o baja reflectancia, esto debido a que al ser vuelos bajos, la resolución espacial permite tamaños de píxel de 2.2 cm y por lo tanto, se puede apreciar de forma correcta el centro de la diana, obteniendo mejores resultados.

Asimismo, para vuelos a 100 m de altura sobre el terreno, la diana con mejor desempeño es la del diseño con geometría de "Cuadros Completos", con niveles de reflectancia baja, principalmente porque a esta altura aún se definen de forma adecuada los colores con los que cuenta la diana y por ende, el observador puede apreciar con mayor precisión donde convergen en el centro los diferentes colores.

En el caso de los vuelos a 120m de altura sobre el terreno, las dianas de geometría de "Cruz" de baja reflectancia, son las que mejor se logran distinguir y por ende, las que permiten que el observador obtenga altas precisiones al colocar los puntos de control terrestre durante el ajuste.

Altura de Vuelo	Tipo de	Tipo de	Imagen de diana	Imagen de diana
Altura de Vuelo	Reflectancia	Geometría	inagen de diana	desde ortofoto
80m	Alta	Cuadros Completos		
	Baja	Cuadros Completos		
100m	Baja	Cuadros Completos		

Tabla 14. Geometría y color de dianas más óptimos según altura de vuelo.

Altura de Vuelo	Tipo de Reflectancia	Tipo de Geometría	lmagen de diana	Imagen de diana desde ortofoto
120m	Baja	Cruz		

Fuente: Elaboración Propia, 2019.

En contraposición, se determina que las dianas menos adecuadas para esta finalidad, según se muestra en la tabla 15. De esta se desprende que a pesar de que las dianas a 80m de altura mantienen de mejor manera la geometría interna debido a que cuentan con un tamaño de píxel más pequeño, se demuestra que la característica de ser de alta reflectancia influye al deformar la geometría completa, dificultando de esta forma, la observación correcta del centro de la misma.

Asimismo para los vuelos a 100m y 120m de altura sobre el terreno, todas las dianas de alta reflectancia, presentan la misma característica, no se logra determinar el centro utilizando la geometría interna de la misma, sino que el observador debe estimar el centro a partir de la geometría externa de la diana, induciendo de esta forma un error tanto en el centro de la diana como la posibilidad de determinar otros elementos geométricos similares que no sean puntos de control terrestre.

Altura de	Tipo de	Tipo de	Imagen de	Imagen de diana
Vuelo	Reflectancia	Geometría	diana	desde ortofoto
80m	Alta	Cuadros Completos		
100m	Alta	Cuadros Completos		
120m	Alta	Cruz		

Tabla 15. Geometría y color de dianas menos óptimas según altura de vuelo.

Fuente: Elaboración Propia, 2019.

Capítulo V: Conclusiones y Recomendaciones

La presente investigación explora la posibilidad de automatizar la colocación de puntos de control terrestre en la imagen, la cual consiste en una etapa fundamental del proceso de ajuste fotogramétrico y que hoy en día se realiza de forma manual. Para este proceso se diseñó un algoritmo basado en operaciones matemáticas matriciales y condicionales, tomando en cuenta el conocimiento de valores de píxel mínimos, máximos, desviación estándar, promedio y la posición de los píxel en coordenadas imagen de las dianas filtradas. Cabe destacar que al realizarse este algoritmo considerando solo valores de píxeles, el resultado se limita; posiblemente si se hubieran considerado otros elementos o forma de realización, los filtros podrían determinar resultados iguales o más adecuados acerca de la posición de las dianas.

Posteriormente se implementó en una rutina de programación la ejecución de los conjuntos de operaciones de forma automática e iterativa, logrando reducir los datos de 108 millones de posibles posiciones del centro de la diana a tan solo 23 posibles posiciones. Es necesario considerar que si bien se generó una reducción importante en la cantidad de posibles posiciones de la diana, aún no se logra la exactitud necesaria para ser implementada en casos prácticos o en proyectos del mercado, por lo cual se determina que el desarrollo de este algoritmo aún debe continuar como trabajo futuro.

Por otra parte, actualmente las dianas utilizadas como puntos de control terrestre en la captura de datos fotogramétricos se efectúan de una manera subjetiva, e inclusive en muchos casos no se utilizan de manera formal, sino que se aprovecha de la presencia de elementos que son visibles en tierra para ser usados como punto de control sin considerar parámetros como tipo de geometría, Niveles de Reflectancia según color y entornos, lo cual dificulta la apreciación por parte del operador del software fotogramétrico para realizar un debido ajuste.

Por lo tanto, tomando en cuenta los parámetros mencionados anteriormente, se planteó y confeccionó un diseño más óptimo para las dianas, los cuales fueron

evaluados a tres diferentes alturas de vuelo, proporcionando un resultado satisfactorio en términos de costos de fabricación, distinción del color con respecto al entorno y facilidad de determinación del centro de la diana. Conforme a estos elementos, se suministra una manera de estandarizar un diseño de dianas en función de las diferentes zonas donde se realice un estudio fotogramétrico, garantizando la capacidad de los puntos de control para ser determinados de forma correcta y sencilla, al realizar los ajustes para la generación de la ortofoto.

Además es importante recalcar que en esta investigación se incluyó la evaluación de vuelos a diferentes alturas, determinando que factores como el tiempo de vuelo, cantidad de fotografías, resolución espacial, exactitud posicional y tiempo de procesamiento, se ven afectados por esta variable. Por lo cual, se concluye satisfactoriamente, que a menor altura de vuelo existe una mejor exactitud posicional; sin embargo, el tiempo de vuelo, la cantidad de fotografías por proyecto y el tiempo de procesamiento, es mucho mayor. Por lo tanto, será principalmente el requerimiento propio del proyecto del usuario, el que determine la altura de vuelo a ser utilizada.

Además, se estableció que el software fotogramétrico más adecuado para realizar la evaluación de las dianas en el caso práctico es Agisoft PhotoScan. Este software posee prestaciones similares a otros programas existentes para realizar ajustes fotogramétricos con UAV; no obstante fue seleccionado principalmente por la penetración del mismo en el mercado de la ingeniería topográfica en el país.

Por otro lado, se estableció como un elemento esencial de la investigación la determinación de la exactitud y por ende la calidad de los insumos fotogramétricos generados con los diseños de dianas propuestos, para lo cual se realizó un muestreo de puntos que fueran fácilmente observables en la ortofoto; comparando así, las posiciones tanto horizontal como vertical de los puntos colectados en campo en contraposición con las posiciones de los mismos puntos provenientes de la restitución desde la ortofoto. Se utilizaron para esta comparación los valores de Error Medio Cuadrático (RMSE) y Exactitud Posicional tanto horizontal como vertical, conforme a los lineamientos planteados por el test NSSDA. Finalmente se

realizó la contraposición de estos últimos con respecto a los valores de aceptación establecidos para el proyecto, los cuales consisten, para la Precisión horizontal, en el cumplimiento del rango de tolerancia definido por el Registro Nacional de Costa Rica de ± 6.00 cm, y para la precisión vertical, los datos encontrados dentro del rango de la desviación estándar al 99% de confianza. A partir de este análisis, se concluye que el 100 % de los datos evaluados horizontalmente y el 88% datos evaluados verticalmente, cumplen con el rango de aceptación establecido, concluyendo así que para las diferentes alturas de vuelo, se alcanza la exactitud requerida para el UAV utilizado, Phantom 4 Pro.

Además, al limitarse el algoritmo de búsqueda a los valores de píxel que conforman a la diana en la imagen, no se logró determinar un solo valor para el centro de la diana, sino que se determinaron 23 posibles dianas, dentro de los cuales se encontraba la posición correcta del centro de la diana de estudio; por lo cual aún se mantienen 22 valores de posiciones ruido detectadas por el programa como posibles dianas. Por lo tanto, se plantea como trabajo futuro la generación de un código que además de contener la evaluación de los valores de píxel, incorpore algún otro argumento de búsqueda dentro de la matriz, para de esta forma lograr determinar una única posición para el centro de cada una de las dianas, y así poder automatizar parte del proceso del ajuste fotogramétrico con Sistemas Aéreos No Tripulados y cámaras no métricas.

Asimismo se insta a desarrollar diferentes metodologías de evaluación de la calidad de los ajustes fotogramétricos, y por ende de la cartografía que se genera a partir de las imágenes aéreas para de esta forma determinar de manera concreta las precisiones de los elementos a restituirse por medio de estos insumos.

Referencias Bibliográficas

- Akbari, H., Levinson, R., & Berdahl, P. (s.f.). ASTM Standards for Measuring Solar Reflectance and Infrared Emittance of Construction Materials and Comparing their Steady-State Surface Temperatures. Lawrence Berkeley National Laboratory, University of California, United States of America. Recuperado el 8 de octubre de 2018 de https://pdfs.semanticscholar.org/13eb/5c53b094b90841159a8e54b0d2adda 3124f3.pdf
- Arce, A. y Monge, R. (2013). Guía Técnica para Georreferenciar Planos de Agrimensura. Registro Nacional Inmobiliario, San José, Costa Rica. Recuperado el 2 de enero de 2019 desde http://www.registronacional.go.cr/catastro/Documentos/GUiA_TEC_GEORR EF_PLAN_AGRIM_ACT_FEBR_2013.pdf
- Atkinson-Gordo, A.D.J, García-Balboa, J.L., Ariza-López, F.J. (2001). Los diferentes test para el control de calidad posicional en cartografía. Actas del XIII Congreso Internacional de Ingeniería Gráfica (INGEGRAF). Universidad de Extremadura, Badajoz, 6-8 de junio de 2001.
- Cervantes-Hernández, P. (2008). Media, Varianza y Desviación Estándar. Revista Ciencia y Mar, XII (34): 29-31. Recuperado el 5 de marzo de 2019 de http://www.umar.mx/revistas/34/media.pdf
- Dirección General de Aviación Civil de Costa Rica (2017). Directiva Operacional de Operaciones con Sistema de Aeronaves Piloteada a Distancia (DO-001-OPS-RPAS).
- DJI (2018). Comparación de Características de Vehículo Aéreo No Tripulado de tipo Phantom DJI. [Figura]. Recuperado el 8 de octubre de 2018 de https://www.dji.com/phantom-4-pro.
- DJI (2016). User Manual Phantom 4 Pro. Recuperado el 8 de octubre de 2018

https://dl.djicdn.com/downloads/phantom_4_pro/Phantom+4+Pro+Pro+Plus +User+Manual+v1.0.pdf

- DJI (2019). Inspire 2. [Figura]. Recuperado el 1 de febrero de Rhttps://store.dji.com/product/inspire-2
- Espejo, M. (2017). Estimación de la desviación estándar. Universidad Católica de San Antonio de Murcia, Revista Estadística Española, Vol. 59, 192/2017, pp.37-44.
- Federal Geographic Data Committee (1998). Geospatial Positioning Accuracy Standards Part 3: National Standard for Spatial Data Accuracy, FGDC-STD-007.3-1998. Recuperado el 6 de diciembre de 2018 desde https://www.fgdc.gov/standards/projects/accuracy/part3/chapter3
- Instituto Geográfico Nacional (1991). Hoja Cartográfica Moravia 1: 10 000. [Figura]. San José, Costa Rica.
- Konica Minolta (s.f.) Comunicación precisa de los colores. [Figura]. Recuperado el 8 de octubre de 2018 de http://sensing.konicaminolta.com.mx/learning-center/color measurement/colorbasics.pdf
- Kuppers, H. (1992). Fundamentos de la teoría de los colores. 4ta Edición. México.
- Forlani, G., Dall'Asta, E., Diotri, F., Morra di Cella, U., Roncella, R. & Santise, M. (2018). Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Recuperado el 2 de setiembre de 2018 desde https://www.mdpi.com/2072-4292/10/2/311/pdf.
- Lucero, S. y Villareal, V. (2006). LEPA: Lenguaje de Expresión de Problemas y Algoritmos para el aprendizaje de la informática en niveles preuniversitarios. (tesis de grado de licenciatura). Universidad Nacional de la Plata, La Plata, Argentina. Recuperado el 1 de febrero de 2019 desde http://sedici.unlp.edu.ar/bitstream/handle/10915/3946/Documento_completo __.pdf-PDFA.pdf?sequence=1

- Python (2017). Python 3.3.7 documentation, Pyhton Tutorial, Data Structure. Recuperado el 27 de diciembre de 2018 desde https://docs.python.org/3.3/tutorial/datastructures.html
- Sekonic (s.f.). Manual del Usuario Litemaster Pro L-478D-U. Recuperado el 8 de octubre de 2018 de https://www.sekonic.com/downloads/l-478_spanish.pdf
- Rodríguez, O. (2012). Directriz RIM-001-2012. Registro Inmobiliario, San José, Costa Rica.
- Spectra Geospatial. (2016). User Guide SP-60. Recuperado el 8 de octubre de 2018 de https://spectrageospatial.com/wp-content/uploads/File-1497616244.pdf
- Trimble (2015). User Guide Trimble R8s GNSS Receiver. Recuperado el 8 de octubre de 2018 de https://community.trimble.com/docs/DOC-1003
- Trimble (2019). Trimble UX5Aerial Imaging Solution for Agricuture. [Figura]. Recuperado el 1 de febrero de 2019 de https://www.trimble.com/agriculture/ux5
- Universidad de Murcia (s.f.) Fundamentos físicos de la Teledetección. Escuela de Geografía, España. Recuperado el 8 de octubre de 2018 de https://www.um.es/geograf/sigmur/teledet/tema01.pdf

Anexos

Anexo A. Características técnicas del VANT Phantom 4 Pro.

Aircraft			
Weight (Battery & Propellers Included)	1388 g		
Diagonal Size (Excluding Propellers)	350 mm		
Max Ascent Speed	Sport mode: 19.7ft/s(6 m/s); GPS mode: 16.4ft/s(5 m/s)		
Max Descent Speed	Sport mode: 13.1ft/s(4 m/s); GPS mode: 9.8ft/s (3 m/s)		
Max Speed	45 mph (72 kph) (S-mode); 36mph (58 kph) (A-mode); 31 mph (50 kph) (P-mode)		
Max Tilt Angle	42° (Sport mode); 35° (Attitude mode); 25° (GPS mode)		
Max Angular Speed	250°/s (Sport mode); 150°/s (Attitude mode)		
Max Service Ceiling Above Sea Level	19685 ft (6000 m)		
Max Flight Time	Approx. 30 minutes		
Operating Temperature Range	32° to 104° F (0° to 40° C)		
Satellite Systems	GPS/GLONASS		
00011	Vertical: ±0.1 m (With Vision Positioning); ±0.5 m (With GPS Positioning)		
GPS Hover Accuracy Hange	Horizontal: ±0.3 m (With Vision Positioning); ±1.5 m (With GPS Positioning)		
Gimbal			
Stabilization	3-axis (pitch, roll, yaw)		
Controllable Range	Pitch: - 90° to + 30°		
Max Controllable Angular Speed	Pitch: 90°/s		
Angular Control Accuracy	±0.01°		
Vision System			
Velocity Range	≤31 mph (50 kph) at 6.6 ft (2 m) above ground		
Altitude Range	0 - 33 feet (0 - 10 m)		
Operating Range	0 - 33 feet (0 - 10 m)		
Obstacle Sensory Range	2 - 98 ft (0.7 - 30 m)		
FOV	60°(Horizontal), ±27°(Vertical)		
Measuring Frequency	10 Hz		
Operating Environment	Surface with clear pattern and adequate lighting (lux > 15)		
Infrared Sensing System			
Obstacle Sensory Range	0.6 - 23 ft (0.2 - 7 m)		
FOV	70°(Horizontal), ±10°(Vertical)		
Measuring Frequency	10 Hz		
Operating Environment	Surface with diffuse reflection material, and reflectivity > 8% (such as wall, trees, humans, etc.)		

Camera	
Sensor	1" CMOS; Effective pixels: 20 M
Lens	FOV (Field of View) 84°, 8.8 mm (35 mm format equivalent: 24 mm), f/2.8 - f/11, auto focus at 1 m - ∞
ISO Range	Video: 100 – 3200 (Auto); 100 - 6400 (Manual) Photo:100 - 3200 (Auto);100 - 12800(Manual)
Mechanical Shutter	8 - 1/2000 s
Electronic Shutter	1/2000 - 1/8000 s
Image Size	3:2 Aspect Ratio: 5472×3648 4:3 Aspect Ratio: 4864×3648 16:9 Aspect Ratio: 5472×3078
PIV Image Size	4096×2160 (4096×2160 24/25/30/48/50p) 3840×2160 (3840×2160 24/25/30/48/50/60p) 2720×1530 (2720×1530 24/25/30/48/50/60p) 1920×1080 (1920×1080 24/25/30/48/50/60/120p) 1280×720 (1280×720 24/25/30/48/50/60/120p)
Still Photography Modes	Single shot Burst shooting: 3/5/7/10/14 frames Auto Exposure Bracketing (AEB): 3/5 Bracketed frames at 0.7EV Bias Interval: 2/3/5/7/10/15/30/60 s
Video Recording Modes	 H.265 C4K: 4096×2160 24/25/30p @100Mbps 4K: 3840×2160 24/25/30p @100Mbps 2.7K: 2720×1530 24/25/30p @65Mbps 2720×1530 48/50/60p @80Mbps FHD: 1920×1080 24/25/30p @50Mbps 1920×1080 120p @100Mbps FHD: 1280×720 24/25/30p @25Mbps 1280×720 48/50/60p @35Mbps 1280×720 120p @60Mbps HD: 1280×720 120p @60Mbps H.264 C4K: 4096×2160 24/25/30/48/50/60p @100Mbps 2.7K: 2720×1530 24/25/30p @80Mbps 2720×1530 48/50/60p @100Mbps FHD: 1920×1080 24/25/30p @80Mbps 1920×1080 120p @100Mbps FHD: 1920×1080 24/25/30p @80Mbps .FHD: 1920×1080 24/25/30p @60Mbps FHD: 1920×1080 120p @100Mbps FHD: 1920×1080 120p @100Mbps FHD: 1280×720 24/25/30p @30Mbps 1920×1080 120p @100Mbps HD: 1280×720 24/25/30p @30Mbps 1920×1080 120p @100Mbps HD: 1280×720 24/25/30p @30Mbps 1920×1080 120p @100Mbps
Max. Bitrate Of Video	100 Mbps
Supported File Systems	FAT32 (< 32 GB); exFAT (> 32 GB)
Photo	JPEG, DNG (RAW), JPEG + DNG
Video	MP4/MOV (AVC/H.264; HEVC/H.265)
Supported SD Cards	Micro SD, Max Capacity: 128GB. Write speed ≥15MB/s, class 10 or UHS-1 rating required
Operating Temperature Range	32° to 104° F (0° to 40° C)

Remote Controller				
Operating Frequency	2.400 - 2.483 GHz and 5.725 - 5.825 GHz			
100 million (100 million)	2.400 - 2.483 GHz (Unobstructed, free of interference)			
	FCC: 4.3 mi (7 km); CE: 2.2 mi (3.5 km); SRRC: 2.5 mi (4 km)			
Max Transmission Distance	5.725 - 5.825 GHz (Unobstructed, free of interference)			
	FCC: 4.3 mi (7 km); CE: 1.2 mi (2 km); SRRC: 2.5 mi (4 km)			
Operating Temperature	32° to 104° F (0° to 40° C)			
Battery	6000 mAh LiPo 2S			
	2.400 - 2.483 GHz			
T	FCC: 26 dBm; CE: 17 dBm; SRRC: 20 dBm			
Transmitter Power (EIRP)	5.725 - 5.825 GHz			
	FCC: 28 dBm; CE: 14 dBm; SRRC: 20 dBm			
Operating Voltage	1.2 A @7.4 V			
Video Output Port	GL300E: HDMI, USB			
	GL300F: USB			
	GL300E: Built-in Display device (5.5 inch screen, 1920×1080,			
Mobile Device Holder	1000 cd/m ² , Android system, 4G RAM+16G ROM)			
	GL300F: Tablets and smartphones			
Charger				
Voltage	17.4 V			
Rated Power	100 W			
Intelligent Flight Battery (PH4-5870	mAh-15.2V)			
Capacity	5870 mAh			
Voltage	15.2 V			
Battery Type	LiPo 4S			
Energy	89.2 Wh			
Net Weight	468 g			
Operating Temperature	14° to 104° F (-10° to 40° C)			
Max. Charging Power	100 W			

Figura 33. Características técnicas del VANT Phantom 4 Pro. Fuente: DJI, 2016

Anexo B. Características técnicas del fotómetro Sekonic Litemaster Pro L-478D-U.

 Luz incidente y luz reflejad Medición de luz incidente 	la Función de difusor plano
Medición de luz incidente	Función de difusor plano
	(Se puede combinar la función mediante el dispositivo que repliega a la lumiesfera hacia la parte interior de este instrumento)
 Medición de luz reflejada 	Función de desmontaje de la lumiesfera (posibilidad de instalar y desinstalar un visor (se vende por separado))
 Fotodiodo de silicio 	
Luz ambiente	Medición de la prioridad del diafragma Medición de la prioridad de la velocidad de obturación Medición de la prioridad TF Medición para cámara cinematográfica Medición para cámara cinematográfica HD Medición de iluminación simple (lux, fc) Medición de brillo simple (fl, cd / m²)
Flash	Medición usando el cable de sincronía (acumulativo, no acumulativo) Medición sin el cable de sincronía (acumulativo, no acumulativo) Medición usando el disparador de radiofrecuencia (acumulativo, no acumulativo) (solo el modelo L-478DR)
 ±0,1EV ó menos 	
 Medición de luz incidente Medición de luz reflejada 	Lumiesfera C=340 Difusor plano C=250 K=12,5
Sensibilidad ISO Velocidad de obturación	ISO3 a 409.600 (1/3 de paso)
Luz ambiente	30 minutos a 1/64.000 de segundo (intervalos completos, 1/2 paso, 1/3 de paso) Otras configuraciones posibles 1/200 y 1/400 de segundo
Flash	30 minutos a 1/1.000 de segundo (intervalos completos, 1/2 paso y 1/3 de paso) Otras configuraciones posibles 1/75, 1/80, 1/90, 1/100, 1/200 y 1/400
Diafragma	F0,5 a F161,2 (en intervalos completos)
Frecuencia de imagen (f/s)	1 a 1.000, además se pueden hacer otras 20 configuraciones
 Ángulo de obturación 	1° a 358°, además se pueden hacer otras 20 configuraciones
 Selección de compensaciones 	ón de filtros
	Se pueden usar simultáneamente hasta cuatro tipos.
 Cantidad de acumulacione 	95
	0 a 99 veces (hasta un máximo de 99 indicaciones)
 Compensación de exposid 	sión
	-9,9EV a +9,9EV (en incrementos de 1/10 de paso)
 Indicación de análisis Compensación de filtro 	-9,9EV a +9,9EV (en incrementos de 1/10 de paso) -5,0EV a +5,0EV (en incrementos de 1/10 de paso)
	 Medición de luz reflejada Fotodiodo de silicio Luz ambiente Flash \$ flash \$ 40,1EV ó menos Medición de luz incidente Medición de luz incidente Medición de luz reflejada \$ ensibilidad ISO \$ Velocidad de obturación Luz ambiente Flash Flash Diafragma Frecuencia de imagen (f/s) Ångulo de obturación \$ selección de compensación \$ Selección de acumulacione Compensación de exposite Indicación de análisis Compensación de filtro

Rango de medición (ISO1)	00)					
unco≓uncidencia in idali ¥537 M	Luz ambiente	FNo.0,5 a F FNo.0,5 a F FNo.0,5~FN Medición de EV22,9 (apr Medición de	No.128 (intervalo comp No.161 (1/3 de paso) lo.152 (1/2 paso) e luz incidente EV-2 (F2 ox. F22,9, 1/8.000 de s	, 15 seg.) a egundo) 19 9		
	Componente de flash	Medición de luz reflejada EV3 a EV19,9 Medición de luz incidente F1,0 a F128,9 Medición de luz reflejada F2 8 a F128 9				
	Iluminación simple	0,63 (EV-2)	a 2.000.000 (EV19,6) lu a 180.000 (EV19,6) fc	x		
	Brillo simple	(Medición de luz reflejada) 1,0 (EV3) a 980.000 (EV22,9) cd /m ² 0,29 (EV1,5) a 290.000 (EV22,9) fc (solo el mo				
	Valor EV	EV-27,9~EV ambiente)	55,8 (válido solo cuano	lo hay luz		
	 Zona de indicaciones analógicas 	Escala T 4s Escala F F1 Escala EV	a 1/2.000 ,0 a F90 (1/3 de paso),			
		-3 -7	EV a +3EV (luz incident EV a +7EV (luz reflejada	e, 1/3 de paso) a, 1/3 de paso)		
		Iluminación	simple lux (lux)	0 a 50.000lux		
		Iluminación	simple fc (pies-bujía)	0 a 5.000fc		
		Brillo simple	e cd/m2 (bujia / metro	o a 2.500cd/m ²		
		Brillo simple	e fl (pie-lambert)	0 a 1.000fl		
Otras funciones	 Cantidad acumulada Indicaciones de comper 	nsación	0 a 99 veces (hasta 99 indicaciones) -9,9EV a +9,9EV (1/10 de paso)			
	 Indicaciones del perfil d 	e exposición	Un máximo de 10			
	 Fotometría separada 		0 a 100% (en incrementos de 10%)			
	 Funciones de memoria 	Se pueden programar hasta 9 memorias				
	 Funciones de eliminació 	n - repaso de	memorias			
	 Funciones de cálculo pr 	omedio				
	 Fuera de rango de medi indicación 	ción e	Indicación de advert (carencia), Over (exc	encia Under eso)		
	 Indicador de la carga de 	las pilas	Cuatro niveles			
	 Función de apagado auto 	omático	Se puede selecciona personalizados	ar en los ajustes		
	 Retroiluminación de LED 	(EL)	Encendida (disminuy después de que tran determinado tiempo	ve de intensidad Iscurre)		
	 Función de bloqueo del p 	panel táctil				
	 Funciones de ajustes per 	rsonalizados	13items			
Pilas	Pilas secas		Dos pilas tipo AAA (incluyendo alcalinas de litio, de hidruro di base de níquel, etc.)	cualquier tipo, , de manganeso e níquel-metal, a		
Variación de la temperatura	a de uso		1000 N 100 N. 100 N. 100 N.			
	 -10°C a 50°C (sin embar) 	go, sin condens	sación)			
Variación de la temperatura	a de almacenamiento					
	 -20°C a 60°C (sin embar) 	go, sin conden	sación)			
Dimensiones	 Aproximadamente 57 (an las partes que sobresale 	ncho) ×140 (altu n)	ra) × 26 (espesor) mm	(a excepción de		
Peso	Aproximadamente 130g	(L-478D sin pila	as) y 140g (L-478DR sir	pilas)		
Accesorios estándar	 Funda, correa, 2 pilas AAA, Guía de inicio rápido, CD-ROM (que incluye el Manual de Usuario (este manual) y una aplicación) 					

Por razones de mejora, es probable que las especificaciones contenidas en este Manual de Usuario y el diseño se vean sujetos a cambios sin previo aviso.

Figura 34. Características técnicas del fotómetro Sekonic Litemaster Pro L-478D-U. Fuente:

Sekonic, s.f.

Anexo C. Características técnicas del Receptor GNSS Trimble R8s.

ESPECIFICACIONES DE FUNCIONAMIENTO

- Chip GNSS topográfico personalizado Trimble Maxwell 6 avanzado con 440 canales
- Asegura la inversión futura a largo plazo con el rastreo Trimble 360
- Correlador múltiple de alta precisión para medidas de pseudodistancia GNSS
 Sin filtrado, datos de medidas de pseudodistancia sin suavizado, para lograr un Sin minado, datos de metudas de pseudodistancia sin suavado, para logral di bajo ruido, pocos errores por trayectoria múltiple, una correlación de dominio de bajo tiempo y respuesta de alta dinámica
 Medidas de fase portadora GNSS de muy bajo ruido con una precisión de <1 mm en un ancho de banda de 1 Hz
- Las razones señal-ruido se señalan en dB-Hz
- Probada tecnología de rastreo de baja elevación de Trimble
 Las señales de satélite actuales se rastrean simultáneamente:
- - s seriales de satellite actuales se rastrean simultaneamente. GPS: L1C/A, L1C, L2C, L2E, L5 GLONASS: L1C/A, L1P, L2C/A, L2P, L3 SBAS: L1C/A, L5 (para satélites SBAS compatibles con L5) Gailleo: E1, E5A, E5B

- BeiDou (COMPASS): B1, B2
 SBAS: QZSS, WAAS, EGNOS, GAGAN
 Velocidad de posicionamiento: 1 Hz, 2 Hz, 5 Hz, 10 Hz, y 20 Hz
- **RENDIMIENTO DE POSICIONAMIENTO²**

miento GNSS diferencial de código Posicion

Horizontal		1 ppm RMS
Vertical		1 ppm RMS
Precisión de posicionamiento	o SBAS diferencial ³ tipico «	c5 m 3DRMS
Medición GNSS estática		

0,1 ppm RMS 0,4 ppm RMS 0,5 ppm RMS 0,5 ppm RMS
+ 1 ppm RMS + 1 ppm RMS
+ 1 ppm RMS + 1 ppm RMS
0,5 ppm RMS 0,5 ppm RMS le <8 segundos

Basado un la configuración del receptor Trenble RIts GRS5.
 La precisión y confisibilidad pueden estar sujetos a anomalias tales como arrores por trayectoria múltiple, obstituative, giometifa ateletar y condiciones atmosfilmas. Las especificaciones establendas recomendan el uno de sognitoris estables en una sona despuéda con una becena vista del cisito, que esti libre de errores por trayectoria múltiple entreteriencias electromagnéticas, y que tenga toro configuración áplima de la constitución CMS5, atminen se recomenda use los métodos de tratajos generalmente aceptudos para establecidas medicarlas de mayos precisión correspondentes a la aplicación determinada, incluyendo el uso de tiempos de ocupación adecuados se longitat de la inea base. Las fineas hase cuma insuja insujat de estables ios 30 km requirem datos de remainos precisions y probabiemente ocupaciones de hasta 24 horas para lograr esigentina valtar.

- proceso vasina Depende refe funcionamiento del saterna WAAS. Los valores PPM de la red RTK se inferenciaria a la estación base física más próxima. Puede venera electado por las condiciones atmosfericas, las señales de trayectoria múltiple, las obstrucciones y la geometría de los satelitas. La conflabilidad de la inicialización se controla continuamente para asegurar la más
- eptor funcionará ilormalmente a -40° C, las baterias internas a -20° C y el módem celular interno op
- a.46^o C.
 P. Rastreo de satelites GPS, GLONASS y SRAS.
 Nastreo de satelites GPS, GLONASS y SRAS.
 Vata según la tempentara y la velocidad de transmisión de datos instantecios. Al usar un receptor y una radio interna en modo de transmisión, se recomienda usar una bateria esterna de 6 Ah o superior. Los tiempos de funcionamiento especificade en una una tradición de incerportar y una radio GAM CSD visitos per commutación de cincultos) a GMS PID (datos per commutación de paquetes).
 Varia sugún determor y las condiciones de operación.
 Varia sugún determor y las condiciones de operación.
 Los autostraciones para los instrumentos con tecnología Bluetooth son específicas a cada país.

HARDWARE

Especificaciones fisicas

Peso 19 cm x 10,4 cm con ros conectores y antena Peso 1,52 kg con bateria interna, radio interna, y antena 3,81 kg con los componentes de arriba más el jalón, al controlador y la radio interna estàndarés medioambientales: Golpes..... Apagado: ha sido diseñado para resistir caídas de hasta 2 m sobre hormigón. Encendido: de diente de sierra hasta 40 G, 10 mseg Vibraciones

ESPECIFICACIONES ELÉCTRICAS

- Entrada de alimentación externa de 11 a 24 V DC con protección contra sobretensión en el puerto 1 (Lemo de 7 pines)
- Batería de ión litio recargable, extraible de 7,4 V, 2,8 Ah
- El consumo de potencia es de <3,2 W en modo móvil RTK con radio interna y Bluetooth[®] en uso⁷
- · Tiempo de funcionamiento con batería interna".

COMUNICACIONES Y ALMACENAMIENTO DE DATOS

- Serial: Serial de 3 cables (Lemo de 7 pines) en Puerto 1. Serie RS-232 completo en el puerto 2 (Dsub de 9 pines)
- Módem de radio': receptor/transmisor de banda ancha de 450 MHz, sellado, totalmente integrado, con un rango de frecuencia de 403 MHz a 473 MHz, compatible con los protocolos de radio Trimble, Pacific Crest, y SATEL: – Potencia de transmisión: 0,5 W
- Alcance: 3-5 km tipico / 10 km optimo9
- Celular¹: opción de módem GSM/GPRS/EDGE/UMTS/HSPA+ interno completamente integrado y hermético. Compatible con datos por conmutación de circuitas (CSD) y datos por conmutación de paquetes. Operación global: – UIMTS/HSPA+ pentabanda (850/800, 900, 1900, y 2100 MHz) – GSM/CSD y GPRS/EDGE cuatribanda (850, 900, 1800, y 1900 MHz) • Bluetooth: puerto de comunicaciones de 2,4 GHz totalmente integrado y
- sellado (Bluetooth)10 Dispositivos de comunicación externos para correcciones soportadas en los
- puertos seriales y Bluetooth Almacenamiento de datos: Memoria interna de 56 MB, 960 horas de
- observables no procesados (aprox. 1,4 MB /dia), en función del registro de datos de 14 satélites a intervalos de 15 segundos

Formatos de datos

- Entrada y salida de CMR+, CMRx, RTCM 2.1, RTCM 2.3, RTCM 3.0, RTCM 3.1
 Salida de 23 mensajes NMEA, salida de mensajes GSOF, RT17 y RT27,

compatible con BINEX y portadora suavizada

WebUI Ofrece una sencilla configuración, operación, estado y transferencia de datos. Accessible por serial y Bluetooth

Controladores de Trimble compatibles¹

Trimble TSC3, Trimble Slate, Trimble CU, robusta Trimble Tablet PC

CERTIFICACIÓN

Sección 15 de la FCC (dispositivos de la clase B), Secciones 15.247 y 90; ICES-003, RSS-210 y RSS-119; CE Mark; C-Tick; Bluetooth EPL

Las especificaciones están sujetas a cambio sin previo aviso.

© 2019, Trintile Navigation Limited. Revenados textos los devechos. Timites y el logo del Clobo tentaqueo y el Tuingalo sen macas comerciales de Trintile Navigation Limited, registratas en los Estados Lineticos y en otros países. Acces, Navies, WEB UL y VES sen macas comerciales de Trintile Navigation Limited. La macas con la paísite Materitority se losos sen propeidad de Buartonth ISG, inc. y tode uso de dichas marcas por parte de Trintile Navigation Limited es hajo ticenda. Android y Google Pay son macas comerciales de Google Inc. Todas bas otras marcas converciales son propiedad de sun respectivos titulares. Mo 2235 (L.13045 (1904) 1011)

Figura 35. Características técnicas de la antena GNSS Trimble R8s. Fuente: Trimble, 2015.

Anexo D. Características técnicas del Receptor GNSS Spectra Precision SP-60.

Caracteristicas GNSS

- 240 canales GNSS
- GPS L1C/A, L1P(Y), L2P(Y), L2C
 GLONASS L1C/A, L2C/A, L3
- BeiDou B1 (fase 2), B2
- Galileo E1, E5b
- QZSS L1C/A, L2C, L1SAIF
- SBAS L1C/A
- Banda I
- Soporte para los servicios de correcciones en tiempo real Trimble RTX*
- Tecnología Z-Blade patentada para un rendimiento GNSS óptimo
 - Aprovechamiento total de señales de los 6 sistemas GNSS (GPS, GLONASS, BeiDou, Galileo, QZSS y SBAS)
 - Algoritmo de centro GNSS mejorado: Seguimiento de señales GNSS totalmente independiente y procesamiento óptimo de señales, incluyendo soluciones solo GPS, solo GLONASS o solo BeiDou (desde Autónomo hasta RTK completo)
 - Rápido motor de búsqueda para una adquisición y readquisición rápidas de señales GNSS
- Telemetria SBAS patentada para usar observaciones y órbitas de código y portadora SBAS en el procesamiento RTK
- Strobe[™] Correlator patentado para reducir la recepción múltiple GNSS
- Hasta 10 Hz de datos brutos en tiempo real (código y portadora y salida de posición)
- Formatos de datos compatibles: ATOM, CMR, CMR+, RTCM 2.1, 2.3, 3.0, 3.1 y 3.2 (incluyendo MSM), CMRx y sCMRx (solo móvil)
- Salida de mensajes NMEA 0183

Precisión en tiempo real (RMS) (1)(2) SBAS (WAAS/EGNOS/MSAS/GAGAN)

- Horizontal: < 50 cm
- Vertical: < 85 cm

Posición DGPS en tiempo real

- Horizontal: 25 cm + 1 ppm
- Vertical: 50 cm + 1 ppm
- Posición cinemática en tiempo real (RTK)
- Horizontal: 8 mm + 1 ppm

Vertical: 15 mm + 1 ppm

- Modos de precisión SIG
- 30/30
- Horizontal: 30 cm Vertical: 30 cm
- 7/2 (opción de firmware necesaria)
 - Horizontal: 7 cm
 - Vertical: 2 cm

Rendimiento en tiempo real

- Inicialización Instant-RTK[®]
- Típicamente 2 segundos para líneas de base < 20 km
- Fiabilidad de hasta el 99,9
- Rango de inicialización RTK: más de 40 km

Precisión de posprocesado (RMS) (1)(2) Estático y estático rápido

- Horizontal: 3 mm + 0,5 ppm
- Vertical: 5 mm + 0,5 ppm
- Estático de alta precisión (3)
- Horizontal: 3 mm + 0.1 ppm
- Vertical: 3,5 mm + 0,4 ppm
- Post-procesado cinemático (PPK)
- Horizontal: 8 mm + 1 ppm
- Vertical: 15 mm + 1 ppm

Características de registro de datos Intervalo de grabación

0,1 - 999 segundos

Características físicas

- Tamaño
- 21 x 21 x 7 cm
- Peso

• 930 g

- Interfaz de usuario
- Cinco LED para encendido, seguimiento, Bluetooth, grabación y operaciones de radio

Interfaz E/S

- Enlace serie RS232
- USB 2.0/UART y USB OTG Bluetooth 2.1 + EDR. Largo alcance:
- Clase 1 (17 dbm)
- Memoria
- 256 MB de memoria interna NAND Flash Más de un mes de datos GNSS brutos de
- 15 segundos desde 14 satélites

Funcionamiento

- Base y remoto RTK
- Receptor de red remoto RTK: VRS, FKP, MAC NTRIP, Direct IP
- Posprocesado

CenterPoint® RTX

FieldPoint RTX**

RangePoint® RTX

ViewPoint RTX**

Trimble RTX (satélite y móvil/IP))

- **Características medioambientales** Temperatura de funcionamiento: -40 °C a +65 °C (4)
- Temperatura de almacenamiento: -40 °C a +85 °C (1)
- Humedad: 100% de condensación
- IP67 resistente al agua, estanco al polvo v la arena
- Caídas: resiste caídas verticales de 2 m sobre hormigón
- Impactos: MIL STD 810 (fig 516.5-10) (01/2000)

Inicialización Trimble RTX (1)(2)(6)

Figura 36. Características técnicas de la antena GNSS Spectra Precision SP60. Fuente: Spectra Geospatial, 2016. .

Horizontal (RMS)

< 4 cm

< 10 cm

< 30 cm

< 50 cm

Vibración:	MIL-STD-810F	(fig.	514.5C-17)
(01/2000)			

Características de alimentación

- Batería de iones de litio, 7,4 V, 2.600 mAh
- Duración de la batería: 10 horas (GNSS) activado, UHF Rx desactivado); 8 horas (GNSS activado, UHF Rx activado) Alimentación CC externa: 9-28 V
- Componentes estándar del sistema
- Receptor SP60
- Batería de iones de litio
- Cargador de pilas dual, fuente de alimentación y cable de alimentación internacional
- Cinta de medición (3,6 m)
- Mira extensible de 7 cm
- Cable USB a mini-USB
- Garantía de 2 años
- Componentes opcionales del sistema

Kit UHF SP60 (410-470 MHz 2W TRx)

- Kit de alimentación en campo SP60
- Kit de alimentación en oficina SP60
- Colectores de datos

- Survey Pro

precisas.

Inicialización

<30 mins, <5 mins

<15 mins, <5 mins

< 5 mins

< 5 mins

- FAST Survey

- ProMark Field

- Ranger 3
- T41
- MobileMapper 50

- Survey Mobile (Android)

- Aplicación de control SPace para

dispositivos de otras marcas (Android)

Las especificaciones de precisión y de TTFF pueden verse afectadas por las condiciones atmosféricas, la señal de recepción múltigér, la generetría satelital y la disponibilidad y calidad de las correcciones.

(2) Los valores de rendimiento asumen un mínimo de cinco sa

siguiendo los procedimientos recomendados en el manual del producto. Las zonas de elevada recepción móltiple, los valores altos del PODO y los penodos de condiciones atmosfericas estimistas piaeden afectar al rendimiento.

(3) Uso de líneas de base largas, ocupaciones largas, efemérides

(4) A temperaturas muy elevadas, el módulo UHE no debe utilizans en modo de transmisor. Si el módulo UHE (kit opcional) se utiliz como transmisor y se entiten 2 W de potencia RF, la temperatura de funcionamiento questará timitada a 455 °C.

(6) El tiempo de inicialización del receptor varia según el estado de la constelación GNSS, el nivel de multifrayecto y la proximidad a obstacuíos, como grandes árboles o edificios.

(5) Sin pilas. Las pilas pueden almacenarse a una temperatura máxima de «70 C.

GNSS

L1 + L2

11 + 12

1.1

L1 + L2

96

- ProMark 120 - Nomad 1050 Software de campo

Anexo E. Características de los Software Fotogramétricos

Tabla 16. Evaluación de características de Software Fotogramétricos de Procesamiento de Imágenes Aéreas.

	-	Capacidad de		
Nombre de	lipo de	Corrección	Observaciones	Direccion de
Software	Licenciamiento	por GCP		Origen
 1- Drone Deploy Enterprise 3D Map Software 	Online Pago.	Sí.	 -Necesita más imágenes para hacer correlación y selección de puntos, por lo que aumenta el tiempo de procesamiento y ubicación de marcadores para GCP. -El procesamiento se hace en la nube, por lo que no se sabe cómo se realiza el 	https://www.dronede ploy.com/product/mo bile/
2- Píx4D Mapper Photogrammetry software	Descargable Pago/Rentable.	Sí.	 -Proceso. -Proceso de ajuste fotogramétrico es muy automatizado. -Baja capacidad de configuración. 	https://www.píx4d.co m/
3- AutoDesk ReCap photogrammetry Software	Descargable Pago	Sí.	 Proceso de ajuste fotogramétrico es muy automatizado. Baja capacidad de configuración. 	https://www.autodes k.com/products/reca p/overview
4- Maps Made Easy orthophoto and 3D models software	Online Gratuito para duración de 24h de procesamiento; para un período menor es Pago.	No.	-El procesamiento se hace en la nube, por lo que no se sabe cómo se realiza el proceso.	https://www.mapsma deeasy.com/

			-El tiempo de carga y	
			descarga del proyecto es	
			alto.	
			-La precisión de la ortofoto	
			es baja, ya que se produce	
			una incorrecta limpieza de la	
			nube de puntos densa y por	
			ende el Modelo de Elevación	
			Digital no representa la	
			superficie del terreno	
			correcta.	
5- 3DF Zephyr photogrammetry software	Online Gratuito con restricciones/ Pago.	Solo en versión "Pro" se pueden utilizar; en versión gratuita no.	 -Se orienta principalmente a toma de objetos en 3D. -En versión gratuita se pueden procesar solamente 50 fotografías. 	https://www.3dflow.n et/3df-zephyr-pro- 3d-models-from- photos/
6- Agisoft PhotoSacn Professional	Descargable Pago.	Sí.	 Procesamiento local. Flujo de trabajo muy sencillo. Control del usuario paso a paso. Capacidad de parametrización de cámara. 	http://www.agisoft.co m/
7- PrecisionHawk 3D map software	Online Gratuito con restricciones/ Pago.	Sí.	 El procesamiento se hace en la nube, por lo que no se sabe cómo se realiza el proceso. Limitada cantidad de nube de puntos y almacenamiento en versión gratuita. 	https://www.precisio nhawk.com/precisio nmapper

8- Open Drone Map Photogrammetry software	Programable- Descargable Gratuito- Pago.	Sí.	 Procesamiento local. Solamente realiza correcciones con el Sistema de Coordenadas WGS84. Buen grado de configuración de procesos manuales. Para efectuar el ajuste se debe tener el valor i,j de cada una de las imágenes en las que se evidencie el GCP. 	https://www.opendro nemap.org/webodm/
9- ESRI Drone2Map for ArcGis	Pago.	Sí.	-Se encuentra en desarrollo, aún no se encuentra en el mercado nacional.	https://doc.arcgis.co m/en/drone2map/
10- UAS Master	Descargable Pago.	Sí.	-Plataforma similar a Agisoft PhotoScan Photogrammetry software -Orientado a UAV de ala fija	https://geospatial.tri mble.com/products- and- solutions/trimble- inpho-uasmaster
11- Erdas Imagine	Descargable Pago.	Sí.	-Plataforma similar a Agisoft PhotoScan Photogrammetry software -Costo elevado de compra.	https://www.hexagon geospatial.com/reso urces/resource- library/webcasts/201 6/uav-image-import- and-processing-in- erdas-imagine- photogrammetry
12- Drone Mapper	Online Gratuito con restricciones/ Pago.	GCP en versión paga solamente.	-El procesamiento se hace en la nube, por lo que no se sabe cómo se realiza el proceso.	https://dronemapper. com/rapid-for-dji/

Fuente: Elaboración Propia, 2018.

Anexo F. Tabla de posiciones N, E, h de los puntos de control terrestre.

Tabla 17. Tabla de Coordenadas N, E, h de puntos de control terrestre medidos en campo con

GNSS.

Número de Punto	Coordenada N (m)	Coordenada E (m)	Coordenada h (m)	Descripción
8	1099468.803	495147.652	1239.965	GCP1
9	1099478.693	495135.318	1239.246	GCP2
6	1099493.574	495067.619	1234.146	GCP3
4	1099660.532	495056.135	1235.595	GCP4
3	1099672.373	495056.009	1235.524	GCP5
10	1099774.375	494974.500	1232.448	GCP6
11	1099777.283	494970.420	1232.379	GCP7
13	1099801.438	494871.192	1231.503	GCP8
12	1099792.255	494862.805	1231.458	GCP9
15	1099785.381	495065.986	1235.980	GCP10
14	1099785.191	495062.952	1235.978	GCP11
5	1099503.432	495071.224	1235.304	GCP12

Fuente: Elaboración Propia, 2018.

Anexo G. Código de Programación en Python de Algoritmo de colocación automática de puntos de control terrestre por valores de píxel.

```
from osgeo import gdal
import sys
import numpy as np
import csv
import os
from array import *
from PIL import Image
import scipy as N
import matplotlib.pyplot as pyplot
from osgeo import gdal
import libreria as lb
import time
tiempoInicial = time.time()
#Definir carpeta de insumos
dataset = "F://CODIGO/ENTRADA/Imagen_muestra_5.jpg"
variable_abrir = gdal.Open(dataset)
resolucion = 2.2 # cm*pixel
tamanoDiana = 60 # cm
tamDianaPix=int(tamanoDiana/(resolucion))
if variable abrir is None:
print ('NO SE PUEDE ABRIR EL DATASET')
     sys.exit(1)
#Extraer datos de las bandas
print ('[ NUMERO DE BANDAS DE RASTER ]: ', variable abrir.RasterCount)
for band in range (variable_abrir.RasterCount ):
    band +=1
     print ("[ OBTENIENDO DATOS DE BANDA ]: ", band)
     bandas_raster = variable_abrir.GetRasterBand(band)
if bandas_raster is None:
```

```
continue
```

stats = bandas_raster.GetStatistics(True, True) if stats is None: continue

print ("[DATOS ESTADISTICOS DE LA BANDA] = Minimum=%.3f, Maximum=%.3f, Mean=%.3f, StdDey=%.3f" % (

stats[0], stats[1], stats[2], stats[3]))

PRIMER FILTRO

 \backslash

Matriz pixel r = np.array(variable abrir.GetRasterBand(1).ReadAsArray())
Matriz pixel g = np.array(variable abrir.GetRasterBand(2).ReadAsArray())
Matriz pixel b = np.array(variable abrir.GetRasterBand(3).ReadAsArray())

pyplot.figure() pyplot.imshow(Matriz_pixel_r) pyplot.show()

| fila = <u>Matriz pixel r.shape</u>[0] columna = <u>Matriz pixel r.shape</u>[1]

listaCentroDianaR =

np.array(lb.encuetraPosibleDianas(Matriz pixel r,tamDianaPix,113,40,180,75,255,200,fila,columna)) # prom/desv/maxOscuro/minOscuro/maxClaro/minClaro

listaCentroDianaB =
np.array(lb.encuetraPosibleDianas(Matriz_pixel_b,tamDianaPix,46,16,169,62,169,113,fila,columna))

listaCentroDianaG =

np.array(lb.encuetraPosibleDianas(Matriz pixel g,tamDianaPix,102,22,180,94,228,202,fila,columna))

tamano_ListaCentroDianaR = np.shape(listaCentroDianaR) print(tamano_ListaCentroDianaR)

```
### SEGUNDO FILTRO #####
intersectRGB = []
threshold = 2
for i in range(len(listaCentroDianaR)):
    coord1 = listaCentroDianaR[i]
    for j in range(len(listaCentroDianaG)):
        threshold1=np.sgrt((coord1[0]-listaCentroDianaG[j][0])**2 + (coord1[1]-
listaCentroDianaG[j][1])**2)
if threshold2 < threshold:
    filaProm=(listaCentroDianaB[i][0]+listaCentroDianaG[i][0]+ listaCentroDianaB[k][0])/3
                        columnaProm = (listaCentroDianaR[i][1] + listaCentroDianaG[j][1] +
listaCentroDianaB[k][1]) /
                        intersectRGB.append([filaProm.columnaProm])
tamDiPix1 = int((tamDianaPix / 2) * np.sgrt(2))
if((tamDiPix1 % 2)!= 0):
tamDiPix1+1 # para que se haga par todo el tiempo
intersecRGBFiltrada = lb.filtrarCentros(intersectRGB,tamDiPix1)
print len(intersecRGBFiltrada)
with open("intersecCSVFiltrada_F.csv", 'w') as csvfile:
     writer = csv.writer(csvfile)
writer.writerows(intersecRGBFiltrada)
###TERCER FILTRO ####
bandaLinearizada = np.multiply(np.multiply(Matriz_pixel_r,Matriz_pixel_b),Matriz_pixel_g) #Linearizacion
de las matrices extraidas por medio del operador multiply
```

```
kernel = np.ones((tamDiPix1,tamDiPix1))*99999.00
```

buffer= 10

```
sumaResiduosCuadrados=999999999.9999
 listCentros =
                 []
centros=[]
tamImgFilaColum = np.shape(bandaLinearizada) #Dimensiones de la matriz bandaLinearizada
for coord in intersecRGBFiltrada:
    for buffer1 in range(buffer): #Buffer1 considera los valores asignados en el buffer
          for buffer2 in range (buffer): #Buffer2 considera los valores asignados en el buffer
                fila= coord[0]-(tamDiPix1+buffer/2)
                columna= coord[1]-(tamDiPix1+buffer/2) #Para que no tome valores fuera de la imagen
                if(fila > 0 and columna > 0 and (tamImgFilaColum[0] > fila+tamDiPix1) and (tamImgFilaColum[1]
> columna+tamDiPix1)): #Condiciones para realizar el procedimiento
    for i in range(tamDiPix1): #Se itera en el tamano de tamDiPix1)
for 1 in range(tamDiPix1): #Se itera en el tamano de tamDiPix1
for j in range(tamDiPix1): #Se itera en el tamano de tamDiPix1
kernel[i][j] = bandaLinearizada[fila+i][columna+j] # Se generan los valores del
kernel recorriendo la matriz de bandaLinearizada
kernel1 = np.hsplit(kernel, int(tamDiPix1/2)) # Se divide el kernel de forma horizontal
kernel2 = np.vsplit(kernel1[0], int(tamDiPix1/2)) # Se divide el kernel de forma vertical
vertical
vertical
                    resta = (kernel2[0]-kernel2[1])+(kernel3[0]-kernel3[1])+(kernel2[0]-
kernel3[0])+(kernel2[1]-kernel3[1]) # resta representa la operación geometrica de restar los cuadrantes
contrarios de la diana
                    restaAlcuadrado=np.multiply(resta,resta)
suma=np.sum(restaAlcuadrado)
                     if (suma<<u>sumaResiduosCuadrados</u>): # aqui simplemente <u>checkea</u> si es menor al interior.
                          sumaResiduosCuadrados = suma
centros = [fila+tamDiPix1+buffer/2,columna+tamDiPix1+buffer/2,suma]
                    kernel = np.ones((tamDiPix1, tamDiPix1)) * 99999.00 #retorna de nuevo la matriz para
iniciar el proceso
     listCentros.append(centros)
     sumaResiduosCuadrados = 999999999.9999
  cuenta = 0
  listaInstance = []
listaCentrosFiltrada = []
  print listCentros
  listaCentrosFiltrada = lb.filtrarCentros(listCentros,tamDiPix1)
  print len(listaCentrosFiltrada)
  with open("listaCentrosFiltrada_imagen_grande_F.csv", 'w') as csvfile:
        writer = csv.writer(csvfile)
writer.writerows(listaCentrosFiltrada)
 pyplot.figure()
pyplot.imshow(Matriz_pixel_r)
pyplot.show()
  tiempoFinal = time.time() - tiempoInicial
  tiempoRedondeado = int(tiempoFinal)
  print (tiempoRedondeado)
  exit("Se concluyo el proyecto")
```

Figura 37. Código implementado de algoritmo para determinación automática de puntos de control terrestre en la imagen por valores de píxel por medio de bandas RGB. Fuente: Elaboración propia,

```
2018.
```

Anexo H. Comparación de la diferencia de las coordenadas para la componente N, E, h de puntos de chequeo medidos con GNSS y obtenidos de la Ortofoto

Tabla 18. Comparación de la diferencia de las coordenadas para la componente N, E, h de puntos de chequeo para vuelo con altura de 80m,

Descripción	on Coordenadas de los Puntos de Chequeo			Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo			
de Punto		medidos GNSS		obt	obtenidas de la imagen			medidos y los obtenidos de la imagen		
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	
CK1	494989.1645	1099749.9400	1232.1787	494989.1900	1099749.9475	1232.3773	0.0255	0.0075	0.1986	
CK2	494972.2395	1099764.7290	1232.1877	494972.2532	1099764.7099	1232.3805	0.0137	-0.0191	0.1928	
CK3	494961.9135	1099751.1280	1232.1677	494961.9192	1099751.1221	1232.3500	0.0057	-0.0059	0.1823	
CK4	494970.8645	1099728.0650	1232.1627	494970.8459	1099728.0553	1232.3608	-0.0186	-0.0097	0.1981	
CK5	495049.6175	1099760.1450	1235.5657	495049.6413	1099760.1411	1235.7904	0.0238	-0.0039	0.2247	
CK6	495073.0485	1099776.2870	1235.6217	495073.0482	1099776.2615	1235.8503	-0.0003	-0.0255	0.2286	
CK7	495103.0645	1099781.2780	1235.9897	495103.0905	1099781.2678	1236.2351	0.0260	-0.0102	0.2454	
CK8	495086.3375	1099791.5600	1235.6597	495086.3298	1099791.5675	1235.8948	-0.0077	0.0075	0.2351	
CK9	495087.7245	1099811.8610	1235.4837	495087.7634	1099811.8561	1235.7421	0.0389	-0.0049	0.2584	
CK10	495042.5245	1099722.1110	1235.6997	495042.5629	1099722.1371	1235.9004	0.0384	0.0261	0.2007	
CK11	495019.2485	1099693.2870	1235.0897	495019.2307	1099693.2953	1235.2832	-0.0178	0.0083	0.1935	
CK12	494999.5745	1099677.6370	1234.7917	494999.5984	1099677.6485	1234.9208	0.0239	0.0115	0.1291	
CK13	494990.3265	1099667.5640	1233.4807	494990.3634	1099667.5766	1233.7083	0.0369	0.0126	0.2276	
CK14	494964.1885	1099669.1770	1233.6117	494964.2025	1099669.1997	1233.8025	0.0140	0.0227	0.1908	
CK15	494941.9945	1099636.9550	1233.5047	494941.9357	1099636.9306	1233.6542	-0.0588	-0.0244	0.1495	
CK16	494955.1355	1099590.5430	1233.3687	494955.1363	1099590.5359	1233.4739	0.0008	-0.0071	0.1052	

Nivel de Reflectancia de diana Alta-Baja y con Geometría de Cuadros Completos.

Descripción	Coordenadas de los Puntos de Chequeo			Coordenad	Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto		medidos GNSS		obte	enidas de la ima	gen	medidos y l	medidos y los obtenidos de la imagen		
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	
CK17	494955.9375	1099599.2610	1233.3617	494955.9252	1099599.2348	1233.4879	-0.0123	-0.0262	0.1262	
CK18	494949.8595	1099582.0350	1233.3477	494949.8746	1099582.0180	1233.4773	0.0151	-0.0170	0.1296	
CK19	495002.9815	1099538.4430	1230.6727	495003.0076	1099538.4491	1230.8923	0.0261	0.0061	0.2196	
CK20	495076.9575	1099504.2930	1235.4427	495076.9727	1099504.3172	1235.6705	0.0152	0.0242	0.2278	
CK21	495071.4355	1099514.8720	1236.0317	495071.4454	1099514.8814	1236.2434	0.0099	0.0094	0.2117	
CK22	495072.9775	1099488.4240	1233.7597	495073.0098	1099488.3960	1234.0154	0.0323	-0.0280	0.2557	
CK23	495076.5295	1099462.0760	1232.3647	495076.5905	1099462.0566	1232.5549	0.0610	-0.0194	0.1902	
CK24	495080.9495	1099495.1390	1234.9477	495080.9845	1099495.0823	1235.1816	0.0350	-0.0567	0.2339	
CK25	495261.5225	1099477.0520	1243.1697	495261.5557	1099477.0308	1243.5054	0.0332	-0.0212	0.3357	
CK26	495255.2565	1099482.1020	1242.8287	495255.2888	1099482.0864	1243.1899	0.0323	-0.0156	0.3612	
CK27	495063.9845	1099569.1750	1236.3627	495063.9820	1099569.1582	1236.5394	-0.0025	-0.0168	0.1767	
CK28	495062.8705	1099597.3940	1235.9307	495062.8623	1099597.3822	1236.1321	-0.0082	-0.0118	0.2014	
CK29	495053.9455	1099634.9650	1235.3737	495053.9831	1099634.9336	1235.5935	0.0376	-0.0314	0.2198	
CK30	495055.0835	1099649.6790	1235.3797	495055.1082	1099649.6628	1235.6151	0.0247	-0.0162	0.2354	
CK31	495048.3785	1099663.1030	1235.2287	495048.3748	1099663.1321	1235.4725	-0.0037	0.0291	0.2438	
CK32	495059.5675	1099665.8490	1235.3397	495059.5704	1099665.8165	1235.5522	0.0029	-0.0325	0.2125	
CK33	495041.6635	1099668.8590	1235.0917	495041.6979	1099668.8446	1235.3267	0.0344	-0.0144	0.2350	

Fuente: Elaboración propia, 2018.

Coordenadas de los Puntos de Chequeo Coordenadas de Puntos de Chequeo Diferencia entre Puntos de Chequeo Descripción de Punto medidos GNSS obtenidas de la imagen medidos y los obtenidos de la imagen Coordenada Coordenada Coordenada Coordenada Coordenada Coordenada Coordenada Coordenada Coordenada Y(m) Y(m) Z (m) X (m) X (m) Z (m) X (m) Y(m) Z (m) 1232.3348 CK1 494989.1645 1099749.9400 1232.1787 494989.2105 1099749.9362 0.0460 -0.0038 0.1561 CK2 494972.2395 1099764.7290 1232.1877 494972.2659 1099764.7087 1232.3470 0.0264 -0.0203 0.1593 CK3 494961.9135 1099751.1280 1232.1677 494961.9325 1099751.0950 1232.3137 0.0190 -0.0330 0.1460 CK4 494970.8645 1099728.0650 1232.1627 494970.8535 1099728.0460 1232.3291 -0.0110 -0.0190 0.1664 CK5 495049.6175 1099760.1450 1235.5657 495049.5937 1235.7863 -0.0238 -0.0046 0.2206 1099760.1404 1235.8441 CK6 495073.0485 1099776.2870 1235.6217 495073.0106 1099776.2785 -0.0379 -0.0085 0.2224 CK7 495103.0645 1099781.2780 1235.9897 495103.0332 1099781.2686 1236.2639 -0.0313 -0.0094 0.2742 CK8 495086.3375 1099791.5600 1235.6597 495086.2896 1099791.5781 1235.8995 -0.04790.0181 0.2398 CK9 495087.7245 1099811.8610 1235.4837 495087.7110 1099811.8681 1235.7712 -0.0135 0.0071 0.2875 CK10 495042.5245 1099722.1110 1235.6997 495042.5680 1099722.1246 1235.8850 0.0435 0.0136 0.1853 CK11 495019.2485 1099693.2870 1235.0897 495019.2496 1235.2677 0.0011 0.0007 1099693.2877 0.1780 494999.5745 494999.6001 CK12 1234.7917 1099677.6451 1099677.6370 1234.9083 0.0256 0.0081 0.1166 CK13 494990.3265 1099667.5640 1233.4807 494990.3641 1099667.5551 1233.7047 0.0376 -0.0089 0.2240 CK14 494964.1885 1099669.1770 1233.6117 494964.2186 1099669.1763 1233.7927 0.0301 -0.0007 0.1810 CK15 494941.9945 1099636.9550 1233.5047 1099636.9135 1233.6426 -0.0292 -0.0415 0.1379 494941.9653 CK16 494955.1355 1099590.5430 1233.3687 494955.1621 1099590.5128 1233.4879 0.0266 -0.0302 0.1192 CK17 1099599.2610 1233.3617 494955.9034 1099599.2439 1233.5035 -0.0341 -0.0171 494955.9375 0.1418 CK18 494949.8595 1099582.0350 1233.3477 494949.8985 1099581.9938 1233.4778 0.0390 -0.0412 0.1301

Tabla 19. Comparación de la diferencia de las coordenadas para la componente X, Y, Z de puntos de chequeo para vuelo con altura de 80m, Nivel de Reflectancia de diana Alta y con Geometría de Cuadros Completos.

Descripción	n Coordenadas de los Puntos de Chequeo			Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo			
de Punto		medidos GNSS		obt	obtenidas de la imagen			medidos y los obtenidos de la imagen		
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	
CK19	495002.9815	1099538.4430	1230.6727	495002.9997	1099538.4522	1230.8881	0.0182	0.0092	0.2154	
CK20	495076.9575	1099504.2930	1235.4427	495076.9766	1099504.3121	1235.6761	0.0191	0.0191	0.2334	
CK21	495071.4355	1099514.8720	1236.0317	495071.4538	1099514.8628	1236.2505	0.0183	-0.0092	0.2188	
CK22	495072.9775	1099488.4240	1233.7597	495072.9977	1099488.4023	1233.9905	0.0202	-0.0217	0.2308	
CK23	495076.5295	1099462.0760	1232.3647	495076.5641	1099462.0579	1232.5669	0.0346	-0.0181	0.2022	
CK24	495080.9495	1099495.1390	1234.9477	495080.9712	1099495.0746	1235.1881	0.0217	-0.0644	0.2404	
CK25	495261.5225	1099477.0520	1243.1697	495261.5082	1099477.0691	1243.5822	-0.0143	0.0171	0.4125	
CK26	495255.2565	1099482.1020	1242.8287	495255.2483	1099482.1177	1243.2748	-0.0082	0.0157	0.4461	
CK27	495063.9845	1099569.1750	1236.3627	495063.9642	1099569.1661	1236.5687	-0.0203	-0.0089	0.2060	
CK28	495062.8705	1099597.3940	1235.9307	495062.8458	1099597.3937	1236.1324	-0.0247	-0.0003	0.2017	
CK29	495053.9455	1099634.9650	1235.3737	495053.9751	1099634.9483	1235.6068	0.0296	-0.0167	0.2331	
CK30	495055.0835	1099649.6790	1235.3797	495055.0960	1099649.6653	1235.6265	0.0125	-0.0137	0.2468	
CK31	495048.3785	1099663.1030	1235.2287	495048.3491	1099663.1309	1235.4563	-0.0294	0.0279	0.2276	
CK32	495059.5675	1099665.8490	1235.3397	495059.5435	1099665.8236	1235.5588	-0.0240	-0.0254	0.2191	
CK33	495041.6635	1099668.8590	1235.0917	495041.7069	1099668.8470	1235.3162	0.0434	-0.0120	0.2245	

Fuente: Elaboración propia, 2018.

Tabla 20. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 80m,

Nivel de Reflectancia de diana Baja y con Geometría de Cuadros Completos.
Descripción	Coordenadas de los Puntos de Chequeo			Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto	medidos GNS	S		obtenidas de	la imagen		medidos y los obtenidos de la imagen		
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)
CK1	494989.1645	1099749.9400	1232.1787	494989.1894	1099749.9379	1232.3859	0.0249	-0.0021	0.2072
CK2	494972.2395	1099764.7290	1232.1877	494972.2280	1099764.7178	1232.3875	-0.0115	-0.0112	0.1998
CK3	494961.9135	1099751.1280	1232.1677	494961.8976	1099751.1191	1232.3618	-0.0159	-0.0089	0.1941
CK4	494970.8645	1099728.0650	1232.1627	494970.8416	1099728.0540	1232.3674	-0.0229	-0.0110	0.2047
CK5	495049.6175	1099760.1450	1235.5657	495049.6516	1099760.1313	1235.7928	0.0341	-0.0137	0.2271
CK6	495073.0485	1099776.2870	1235.6217	495073.0491	1099776.2705	1235.8331	0.0006	-0.0165	0.2114
CK7	495103.0645	1099781.2780	1235.9897	495103.0852	1099781.2665	1236.2126	0.0207	-0.0115	0.2229
CK8	495086.3375	1099791.5600	1235.6597	495086.3360	1099791.5748	1235.8792	-0.0015	0.0148	0.2195
CK9	495087.7245	1099811.8610	1235.4837	495087.7649	1099811.8661	1235.7333	0.0404	0.0051	0.2496
CK10	495042.5245	1099722.1110	1235.6997	495042.5807	1099722.1414	1235.8976	0.0562	0.0304	0.1979
CK11	495019.2485	1099693.2870	1235.0897	495019.2542	1099693.2908	1235.2887	0.0057	0.0038	0.1990
CK12	494999.5745	1099677.6370	1234.7917	494999.6016	1099677.6527	1234.9374	0.0271	0.0157	0.1457
CK13	494990.3265	1099667.5640	1233.4807	494990.3501	1099667.5644	1233.7328	0.0236	0.0004	0.2521
CK14	494964.1885	1099669.1770	1233.6117	494964.2003	1099669.1975	1233.8265	0.0118	0.0205	0.2148
CK15	494941.9945	1099636.9550	1233.5047	494941.9326	1099636.9503	1233.6680	-0.0619	-0.0047	0.1633
CK16	494955.1355	1099590.5430	1233.3687	494955.1375	1099590.5462	1233.4961	0.0020	0.0032	0.1274
CK17	494955.9375	1099599.2610	1233.3617	494955.9078	1099599.2728	1233.5127	-0.0297	0.0118	0.1510
CK18	494949.8595	1099582.0350	1233.3477	494949.8798	1099582.0192	1233.4872	0.0203	-0.0158	0.1395
CK19	495002.9815	1099538.4430	1230.6727	495003.0082	1099538.4585	1230.8934	0.0267	0.0155	0.2207
CK20	495076.9575	1099504.2930	1235.4427	495076.9981	1099504.3204	1235.6404	0.0406	0.0274	0.1977

Descripción	Coordenadas	de los Puntos	de Chequeo	Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto	medidos GNS	S		obtenidas de	la imagen		medidos y los obtenidos de la imagen		
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)
CK21	495071.4355	1099514.8720	1236.0317	495071.4663	1099514.8286	1236.2223	0.0308	-0.0434	0.1906
CK22	495072.9775	1099488.4240	1233.7597	495072.9943	1099488.4034	1233.9702	0.0168	-0.0206	0.2105
CK23	495076.5295	1099462.0760	1232.3647	495076.5951	1099462.0878	1232.5581	0.0656	0.0118	0.1934
CK24	495080.9495	1099495.1390	1234.9477	495080.9693	1099495.1161	1235.1555	0.0198	-0.0229	0.2078
CK25	495261.5225	1099477.0520	1243.1697	495261.5455	1099477.0274	1243.4926	0.0230	-0.0246	0.3229
CK26	495255.2565	1099482.1020	1242.8287	495255.2603	1099482.0915	1243.1865	0.0038	-0.0105	0.3578
CK27	495063.9845	1099569.1750	1236.3627	495063.9812	1099569.1605	1236.5361	-0.0033	-0.0145	0.1734
CK28	495062.8705	1099597.3940	1235.9307	495062.8652	1099597.3871	1236.1146	-0.0053	-0.0069	0.1839
CK29	495053.9455	1099634.9650	1235.3737	495053.9965	1099634.9316	1235.5801	0.0510	-0.0334	0.2064
CK30	495055.0835	1099649.6790	1235.3797	495055.1158	1099649.6620	1235.6168	0.0323	-0.0170	0.2371
CK31	495048.3785	1099663.1030	1235.2287	495048.3722	1099663.1247	1235.4539	-0.0063	0.0217	0.2252
CK32	495059.5675	1099665.8490	1235.3397	495059.5665	1099665.8175	1235.5482	-0.0010	-0.0315	0.2085
CK33	495041.6635	1099668.8590	1235.0917	495041.7383	1099668.8350	1235.3314	0.0748	-0.0240	0.2397

Tabla 21. Comparación de la diferencia de las coordenadas para la componente N, E, h de puntos de chequeo para vuelo con altura de 100m, Nivel de Reflectancia de diana Alta-Baja y con Geometría de Cuadros Completos.

Descripción	Coordenada	as de los Puntos	de Chequeo	Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto		medidos GNSS		obte	enidas de la ima	gen	medidos y l	os obtenidos d	le la imagen
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)
CK1	494989.1645	1099749.9400	1232.1787	494989.1453	1099749.9054	1232.4186	-0.0192	-0.0346	0.2399
CK2	494972.2395	1099764.7290	1232.1877	494972.2148	1099764.7018	1232.3821	-0.0247	-0.0272	0.1944
CK3	494961.9135	1099751.1280	1232.1677	494961.8978	1099751.0840	1232.3437	-0.0157	-0.0440	0.1760
CK4	494970.8645	1099728.0650	1232.1627	494970.8973	1099728.0420	1232.3739	0.0328	-0.0230	0.2112
CK5	495049.6175	1099760.1450	1235.5657	495049.5777	1099760.0818	1235.7612	-0.0398	-0.0632	0.1955
CK6	495073.0485	1099776.2870	1235.6217	495073.0509	1099776.2390	1235.8430	0.0024	-0.0480	0.2213
CK7	495103.0645	1099781.2780	1235.9897	495103.0860	1099781.2576	1236.2456	0.0215	-0.0204	0.2559
CK8	495086.3375	1099791.5600	1235.6597	495086.3586	1099791.5695	1235.9369	0.0211	0.0095	0.2772
CK9	495087.7245	1099811.8610	1235.4837	495087.7369	1099811.8606	1235.7194	0.0124	-0.0004	0.2357
CK10	495042.5245	1099722.1110	1235.6997	495042.5351	1099722.1007	1235.9197	0.0106	-0.0103	0.2200
CK11	495019.2485	1099693.2870	1235.0897	495019.2784	1099693.2426	1235.2844	0.0299	-0.0444	0.1947
CK12	494999.5745	1099677.6370	1234.7917	494999.6018	1099677.5764	1234.9093	0.0273	-0.0606	0.1176
CK13	494990.3265	1099667.5640	1233.4807	494990.3140	1099667.5122	1233.7042	-0.0125	-0.0518	0.2235
CK14	494964.1885	1099669.1770	1233.6117	494964.1893	1099669.1338	1233.7673	0.0008	-0.0432	0.1556
CK15	494941.9945	1099636.9550	1233.5047	494941.9740	1099636.8760	1233.6146	-0.0205	-0.0790	0.1099
CK16	494955.1355	1099590.5430	1233.3687	494955.1658	1099590.4750	1233.4733	0.0303	-0.0680	0.1046
CK17	494955.9375	1099599.2610	1233.3617	494955.9966	1099599.2343	1233.4735	0.0591	-0.0267	0.1118
CK18	494949.8595	1099582.0350	1233.3477	494949.9055	1099581.9376	1233.4287	0.0460	-0.0974	0.0810
CK19	495002.9815	1099538.4430	1230.6727	495002.9857	1099538.4277	1230.8984	0.0042	-0.0153	0.2257
CK20	495076.9575	1099504.2930	1235.4427	495076.9397	1099504.2588	1235.6797	-0.0178	-0.0342	0.2370

Descripción	Coordenada	as de los Puntos	de Chequeo	Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto		medidos GNSS		obt	enidas de la ima	igen	medidos y l	os obtenidos c	le la imagen
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)
CK21	495071.4355	1099514.8720	1236.0317	495071.4412	1099514.8393	1236.2494	0.0057	-0.0327	0.2177
CK22	495072.9775	1099488.4240	1233.7597	495073.0271	1099488.3701	1234.0216	0.0496	-0.0539	0.2619
CK23	495076.5295	1099462.0760	1232.3647	495076.5942	1099461.7140	1230.6006	0.0647	-0.3620	-1.7641
CK24	495080.9495	1099495.1390	1234.9477	495080.9568	1099495.0793	1235.1793	0.0073	-0.0597	0.2316
CK25	495261.5225	1099477.0520	1243.1697	495261.4562	1099477.1013	1243.5555	-0.0663	0.0493	0.3858
CK26	495255.2565	1099482.1020	1242.8287	495255.1618	1099482.1504	1243.2736	-0.0947	0.0484	0.4449
CK27	495063.9845	1099569.1750	1236.3627	495064.0064	1099569.1263	1236.5516	0.0219	-0.0487	0.1889
CK28	495062.8705	1099597.3940	1235.9307	495062.8247	1099597.3605	1236.1273	-0.0458	-0.0335	0.1966
CK29	495053.9455	1099634.9650	1235.3737	495053.9118	1099634.8843	1235.6230	-0.0337	-0.0807	0.2493
CK30	495055.0835	1099649.6790	1235.3797	495055.0985	1099649.6118	1235.6204	0.0150	-0.0672	0.2407
CK31	495048.3785	1099663.1030	1235.2287	495048.3780	1099663.1184	1235.5399	-0.0005	0.0154	0.3112
CK32	495059.5675	1099665.8490	1235.3397	495059.5732	1099665.7697	1235.5708	0.0057	-0.0793	0.2311
CK33	495041.6635	1099668.8590	1235.0917	495041.7480	1099668.8049	1235.2949	0.0845	-0.0541	0.2032

Tabla 22. Comparación de la diferencia de las coordenadas para la componente N, E,h de puntos de chequeo para vuelo con altura de 100m, Nivel de Reflectancia de diana Alta y con Geometría de Cuadros Completos.

Descripción	Coordenada	as de los Puntos e	de Chequeo	Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto		medidos GNSS		obte	enidas de la ima	gen	medidos y lo	os obtenidos d	e la imagen
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)
CK1	494989.1645	1099749.9400	1232.1787	494989.1392	1099749.8866	1232.3706	-0.0253	-0.0534	0.1919
CK2	494972.2395	1099764.7290	1232.1877	494972.2041	1099764.6810	1232.3586	-0.0354	-0.0480	0.1709
CK3	494961.9135	1099751.1280	1232.1677	494961.8868	1099751.0672	1232.3412	-0.0267	-0.0608	0.1735
CK4	494970.8645	1099728.0650	1232.1627	494970.8977	1099728.0267	1232.3776	0.0332	-0.0383	0.2149
CK5	495049.6175	1099760.1450	1235.5657	495049.5679	1099760.0780	1235.7612	-0.0496	-0.0670	0.1955
CK6	495073.0485	1099776.2870	1235.6217	495073.0510	1099776.2162	1235.8398	0.0025	-0.0708	0.2181
CK7	495103.0645	1099781.2780	1235.9897	495103.0580	1099781.2386	1236.2394	-0.0065	-0.0394	0.2497
CK8	495086.3375	1099791.5600	1235.6597	495086.3353	1099791.5391	1235.905	-0.0022	-0.0209	0.2453
CK9	495087.7245	1099811.8610	1235.4837	495087.7153	1099811.8413	1235.7109	-0.0092	-0.0197	0.2272
CK10	495042.5245	1099722.1110	1235.6997	495042.5383	1099722.0923	1235.9482	0.0138	-0.0187	0.2485
CK11	495019.2485	1099693.2870	1235.0897	495019.2759	1099693.2310	1235.2902	0.0274	-0.0560	0.2005
CK12	494999.5745	1099677.6370	1234.7917	494999.5862	1099677.5721	1234.9443	0.0117	-0.0649	0.1526
CK13	494990.3265	1099667.5640	1233.4807	494990.3204	1099667.4992	1233.7375	-0.0061	-0.0648	0.2568
CK14	494964.1885	1099669.1770	1233.6117	494964.1856	1099669.1201	1233.8323	-0.0029	-0.0569	0.2206
CK15	494941.9945	1099636.9550	1233.5047	494941.9929	1099636.8819	1233.7128	-0.0016	-0.0731	0.2081
CK16	494955.1355	1099590.5430	1233.3687	494955.1794	1099590.4674	1233.541	0.0439	-0.0756	0.1723
CK17	494955.9375	1099599.2610	1233.3617	494956.0172	1099599.2097	1233.5416	0.0797	-0.0513	0.1799
CK18	494949.8595	1099582.0350	1233.3477	494949.9265	1099581.9491	1233.5079	0.0670	-0.0859	0.1602
CK19	495002.9815	1099538.4430	1230.6727	495002.9996	1099538.4130	1230.8907	0.0181	-0.0300	0.2180
CK20	495076.9575	1099504.2930	1235.4427	495076.9628	1099504.2846	1235.7045	0.0053	-0.0084	0.2618

Descripción	Coordenadas de los Puntos de Chequeo			Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto		medidos GNSS		obte	enidas de la ima	gen	medidos y los obtenidos de la imagen		
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)
CK21	495071.4355	1099514.8720	1236.0317	495071.4563	1099514.8406	1236.2938	0.0208	-0.0314	0.2621
CK22	495072.9775	1099488.4240	1233.7597	495073.0100	1099488.3796	1234.0295	0.0325	-0.0444	0.2698
CK23	495076.5295	1099462.0760	1232.3647	495076.5926	1099461.7079	1230.4496	0.0631	-0.3681	-1.9151
CK24	495080.9495	1099495.1390	1234.9477	495080.9512	1099495.0788	1235.1908	0.0017	-0.0602	0.2431
CK25	495261.5225	1099477.0520	1243.1697	495261.4172	1099477.0987	1243.4736	-0.1053	0.0467	0.3039
CK26	495255.2565	1099482.1020	1242.8287	495255.1326	1099482.1398	1243.1858	-0.1239	0.0378	0.3571
CK27	495063.9845	1099569.1750	1236.3627	495064.0071	1099569.1180	1236.637	0.0226	-0.0570	0.2743
CK28	495062.8705	1099597.3940	1235.9307	495062.8363	1099597.3249	1236.1868	-0.0342	-0.0691	0.2561
CK29	495053.9455	1099634.9650	1235.3737	495053.9240	1099634.8668	1235.6543	-0.0215	-0.0982	0.2806
CK30	495055.0835	1099649.6790	1235.3797	495055.0943	1099649.6014	1235.6506	0.0108	-0.0776	0.2709
CK31	495048.3785	1099663.1030	1235.2287	495048.3884	1099663.0945	1235.5408	0.0099	-0.0085	0.3121
CK32	495059.5675	1099665.8490	1235.3397	495059.5593	1099665.7614	1235.5747	-0.0082	-0.0876	0.2350
CK33	495041.6635	1099668.8590	1235.0917	495041.7269	1099668.7850	1235.3278	0.0634	-0.0740	0.2361

Tabla 23. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 100m,

Nivel de Reflectancia de diana Baja y con Geometría de Cuadros Completos.

Descripción	Coordenada	as de los Puntos	de Chequeo	Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto		medidos GNSS		obte	enidas de la ima	gen	medidos y l	os obtenidos c	le la imagen
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)
CK1	494989.1645	1099749.9400	1232.1787	494989.1409	1099749.9167	1232.4386	-0.0236	-0.0233	0.2599
CK2	494972.2395	1099764.7290	1232.1877	494972.2067	1099764.7106	1232.4211	-0.0328	-0.0184	0.2334
CK3	494961.9135	1099751.1280	1232.1677	494961.8927	1099751.0998	1232.3806	-0.0208	-0.0282	0.2129
CK4	494970.8645	1099728.0650	1232.1627	494970.8955	1099728.0855	1232.41	0.0310	0.0205	0.2473
CK5	495049.6175	1099760.1450	1235.5657	495049.5755	1099760.0848	1235.7732	-0.0420	-0.0602	0.2075
CK6	495073.0485	1099776.2870	1235.6217	495073.0803	1099776.2711	1235.8417	0.0318	-0.0159	0.2200
CK7	495103.0645	1099781.2780	1235.9897	495103.0725	1099781.2609	1236.2263	0.0080	-0.0171	0.2366
CK8	495086.3375	1099791.5600	1235.6597	495086.3487	1099791.5775	1235.9156	0.0112	0.0175	0.2559
CK9	495087.7245	1099811.8610	1235.4837	495087.7235	1099811.8622	1235.7257	-0.0010	0.0012	0.2420
CK10	495042.5245	1099722.1110	1235.6997	495042.5681	1099722.1485	1235.9398	0.0436	0.0375	0.2401
CK11	495019.2485	1099693.2870	1235.0897	495019.2795	1099693.2794	1235.2992	0.0310	-0.0076	0.2095
CK12	494999.5745	1099677.6370	1234.7917	494999.6093	1099677.6195	1234.9248	0.0348	-0.0175	0.1331
CK13	494990.3265	1099667.5640	1233.4807	494990.3213	1099667.5687	1233.7374	-0.0052	0.0047	0.2567
CK14	494964.1885	1099669.1770	1233.6117	494964.1909	1099669.1830	1233.8258	0.0024	0.0060	0.2141
CK15	494941.9945	1099636.9550	1233.5047	494941.9761	1099636.9359	1233.6815	-0.0184	-0.0191	0.1768
CK16	494955.1355	1099590.5430	1233.3687	494955.1541	1099590.5464	1233.5062	0.0186	0.0034	0.1375
CK17	494955.9375	1099599.2610	1233.3617	494955.9823	1099599.2746	1233.5236	0.0448	0.0136	0.1619
CK18	494949.8595	1099582.0350	1233.3477	494949.9111	1099581.9747	1233.4789	0.0516	-0.0603	0.1312
CK19	495002.9815	1099538.4430	1230.6727	495002.9843	1099538.4686	1230.9187	0.0028	0.0256	0.2460
CK20	495076.9575	1099504.2930	1235.4427	495076.9555	1099504.2860	1235.6779	-0.0020	-0.0070	0.2352

Descripción	Coordenada	as de los Puntos	de Chequeo	Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto		medidos GNSS		obt	enidas de la ima	igen	medidos y los obtenidos de la imagen		
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)
CK21	495071.4355	1099514.8720	1236.0317	495071.4373	1099514.8629	1236.2555	0.0018	-0.0091	0.2238
CK22	495072.9775	1099488.4240	1233.7597	495073.0184	1099488.3933	1234.0264	0.0409	-0.0307	0.2667
CK23	495076.5295	1099462.0760	1232.3647	495076.5917	1099461.7331	1230.5802	0.0622	-0.3429	-1.7845
CK24	495080.9495	1099495.1390	1234.9477	495080.9799	1099495.0707	1235.1975	0.0304	-0.0683	0.2498
CK25	495261.5225	1099477.0520	1243.1697	495261.5540	1099477.0416	1243.5375	0.0315	-0.0104	0.3678
CK26	495255.2565	1099482.1020	1242.8287	495255.2618	1099482.0984	1243.2456	0.0053	-0.0036	0.4169
CK27	495063.9845	1099569.1750	1236.3627	495064.0272	1099569.1532	1236.5632	0.0427	-0.0218	0.2005
CK28	495062.8705	1099597.3940	1235.9307	495062.8487	1099597.3979	1236.141	-0.0218	0.0039	0.2103
CK29	495053.9455	1099634.9650	1235.3737	495053.9405	1099634.9101	1235.6151	-0.0050	-0.0549	0.2414
CK30	495055.0835	1099649.6790	1235.3797	495055.1138	1099649.6564	1235.637	0.0303	-0.0226	0.2573
CK31	495048.3785	1099663.1030	1235.2287	495048.4095	1099663.1687	1235.5349	0.0310	0.0657	0.3062
CK32	495059.5675	1099665.8490	1235.3397	495059.6000	1099665.8138	1235.5869	0.0325	-0.0352	0.2472
CK33	495041.6635	1099668.8590	1235.0917	495041.7658	1099668.8406	1235.3121	0.1023	-0.0184	0.2204

Tabla 24. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 120m,Nivel de Reflectancia de diana Alta-Baja y con Geometría de Cuadros Completos.

Descripción	Coordenada	as de los Puntos	de Chequeo	Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto		medidos GNSS		obte	enidas de la ima	gen	medidos y l	os obtenidos c	le la imagen
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)
CK1	494989.1645	1099749.9400	1232.1787	494989.1525	1099749.9060	1232.3895	-0.0120	-0.0340	0.2108
CK2	494972.2395	1099764.7290	1232.1877	494972.2652	1099764.6950	1232.3774	0.0257	-0.0340	0.1897
CK3	494961.9135	1099751.1280	1232.1677	494961.9324	1099751.0880	1232.363	0.0189	-0.0400	0.1953
CK4	494970.8645	1099728.0650	1232.1627	494970.8987	1099728.0420	1232.3817	0.0342	-0.0230	0.2190
CK5	495049.6175	1099760.1450	1235.5657	495049.5849	1099760.0530	1235.8013	-0.0326	-0.0920	0.2356
CK6	495073.0485	1099776.2870	1235.6217	495072.9869	1099776.2520	1235.8802	-0.0616	-0.0350	0.2585
CK7	495103.0645	1099781.2780	1235.9897	495103.0421	1099781.2280	1236.2085	-0.0224	-0.0500	0.2188
CK8	495086.3375	1099791.5600	1235.6597	495086.2721	1099791.5600	1235.9001	-0.0654	0.0000	0.2404
CK9	495087.7245	1099811.8610	1235.4837	495087.7346	1099811.8470	1235.6946	0.0101	-0.0140	0.2109
CK10	495042.5245	1099722.1110	1235.6997	495042.5656	1099722.0860	1235.9413	0.0411	-0.0250	0.2416
CK11	495019.2485	1099693.2870	1235.0897	495019.2628	1099693.2430	1235.2467	0.0143	-0.0440	0.1570
CK12	494999.5745	1099677.6370	1234.7917	494999.5656	1099677.5930	1234.898	-0.0089	-0.0440	0.1063
CK13	494990.3265	1099667.5640	1233.4807	494990.2996	1099667.5110	1233.7163	-0.0269	-0.0530	0.2356
CK14	494964.1885	1099669.1770	1233.6117	494964.1729	1099669.1230	1233.8259	-0.0156	-0.0540	0.2142
CK15	494941.9945	1099636.9550	1233.5047	494942.0174	1099636.9140	1233.6902	0.0229	-0.0410	0.1855
CK16	494955.1355	1099590.5430	1233.3687	494955.1551	1099590.4960	1233.4622	0.0196	-0.0470	0.0935
CK17	494955.9375	1099599.2610	1233.3617	494955.9371	1099599.2460	1233.4462	-0.0004	-0.0150	0.0845
CK18	494949.8595	1099582.0350	1233.3477	494949.9164	1099581.9480	1233.4226	0.0569	-0.0870	0.0749
CK19	495002.9815	1099538.4430	1230.6727	495002.9877	1099538.3940	1230.8301	0.0062	-0.0490	0.1574
CK20	495076.9575	1099504.2930	1235.4427	495076.9527	1099504.2800	1235.684	-0.0048	-0.0130	0.2413

Descripción	Coordenada	as de los Puntos	de Chequeo	Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto		medidos GNSS		obt	enidas de la ima	gen	medidos y los obtenidos de la imagen		
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)
CK21	495071.4355	1099514.8720	1236.0317	495071.4289	1099514.8350	1236.2509	-0.0066	-0.0370	0.2192
CK22	495072.9775	1099488.4240	1233.7597	495072.9807	1099488.3890	1233.994	0.0032	-0.0350	0.2343
CK23	495076.5295	1099462.0760	1232.3647	495076.5979	1099462.0630	1232.5615	0.0684	-0.0130	0.1968
CK24	495080.9495	1099495.1390	1234.9477	495080.9579	1099495.0840	1235.149	0.0084	-0.0550	0.2013
CK25	495261.5225	1099477.0520	1243.1697	495261.1597	1099477.4710	1239.8766	-0.3628	0.4190	-3.2931
CK26	495255.2565	1099482.1020	1242.8287	495255.8231	1099482.2440	1239.2549	0.5666	0.1420	-3.5738
CK27	495063.9845	1099569.1750	1236.3627	495064.0015	1099569.1230	1236.5641	0.0170	-0.0520	0.2014
CK28	495062.8705	1099597.3940	1235.9307	495062.8238	1099597.3320	1236.1444	-0.0467	-0.0620	0.2137
CK29	495053.9455	1099634.9650	1235.3737	495053.9298	1099634.8860	1235.6337	-0.0157	-0.0790	0.2600
CK30	495055.0835	1099649.6790	1235.3797	495055.0682	1099649.6300	1235.5963	-0.0153	-0.0490	0.2166
CK31	495048.3785	1099663.1030	1235.2287	495048.3129	1099663.0110	1235.763	-0.0656	-0.0920	0.5343
CK32	495059.5675	1099665.8490	1235.3397	495059.5579	1099665.7850	1235.5333	-0.0096	-0.0640	0.1936
CK33	495041.6635	1099668.8590	1235.0917	495041.6659	1099668.7940	1235.3298	0.0024	-0.0650	0.2381

Tabla 25. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 120m,

Nivel de Reflectancia de diana Alta y con Geometría de Cuadros Completos.

Descripción	Coordenada	s de los Puntos o medidos GNSS	le Chequeo	Coordenad obte	las de Puntos c enidas de la ima	le Chequeo agen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
de Funto	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	
CK1	494989.1645	1099749.9399	1232.1787	494989.1981	1099749.9231	1232.4197	0.0336	-0.0168	0.2410	
CK2	494972.2395	1099764.7289	1232.1877	494972.2664	1099764.6994	1232.4093	0.0269	-0.0295	0.2216	
СКЗ	494961.9135	1099751.1279	1232.1677	494961.9409	1099751.0950	1232.3744	0.0274	-0.0329	0.2067	
CK4	494970.8645	1099728.0649	1232.1627	494970.9119	1099728.0763	1232.3812	0.0474	0.0114	0.2185	
CK5	495049.6175	1099760.1449	1235.5657	495049.5683	1099760.0866	1235.7887	-0.0492	-0.0583	0.2230	
CK6	495073.0485	1099776.2869	1235.6217	495073.0111	1099776.2595	1235.8478	-0.0374	-0.0274	0.2261	
CK7	495103.0645	1099781.2779	1235.9897	495103.0603	1099781.2570	1236.1786	-0.0042	-0.0209	0.1889	
CK8	495086.3375	1099791.5599	1235.6597	495086.2867	1099791.5696	1235.8677	-0.0508	0.0097	0.2080	
CK9	495087.7245	1099811.8609	1235.4837	495087.7310	1099811.8722	1235.6943	0.0065	0.0113	0.2106	
CK10	495042.5245	1099722.1109	1235.6997	495042.5630	1099722.1006	1235.9386	0.0385	-0.0103	0.2389	
CK11	495019.2485	1099693.2869	1235.0897	495019.2866	1099693.2758	1235.276	0.0381	-0.0111	0.1863	
CK12	494999.5745	1099677.6369	1234.7917	494999.5750	1099677.6267	1234.9191	0.0005	-0.0102	0.1274	
CK13	494990.3265	1099667.5639	1233.4807	494990.3037	1099667.5590	1233.736	-0.0228	-0.0049	0.2553	
CK14	494964.1885	1099669.1769	1233.6117	494964.1673	1099669.1510	1233.8545	-0.0212	-0.0259	0.2428	
CK15	494941.9945	1099636.9549	1233.5047	494942.0314	1099636.9587	1233.7189	0.0369	0.0038	0.2142	
CK16	494955.1355	1099590.5429	1233.3687	494955.1584	1099590.5537	1233.521	0.0229	0.0108	0.1523	
CK17	494955.9375	1099599.2609	1233.3617	494955.9854	1099599.2838	1233.505	0.0479	0.0229	0.1433	
CK18	494949.8595	1099582.0349	1233.3477	494949.8879	1099581.9855	1233.4808	0.0284	-0.0494	0.1331	
CK19	495002.9815	1099538.4429	1230.6727	495002.9933	1099538.4295	1230.9155	0.0118	-0.0134	0.2428	
CK20	495076.9575	1099504.2929	1235.4427	495076.9464	1099504.3055	1235.678	-0.0111	0.0126	0.2353	
CK21	495071.4355	1099514.8719	1236.0317	495071.4516	1099514.6888	1235.8159	0.0161	-0.1831	-0.2158	
CK22	495072.9775	1099488.4239	1233.7597	495072.9716	1099488.4158	1234.0081	-0.0059	-0.0081	0.2484	
CK23	495076.5295	1099462.0759	1232.3647	495076.5762	1099462.0641	1232.562	0.0467	-0.0118	0.1973	
CK24	495080.9495	1099495.1389	1234.9477	495080.9593	1099495.1016	1235.1377	0.0098	-0.0373	0.1900	

Descripción de Punto	Coordenada	s de los Puntos o medidos GNSS	le Chequeo	Coordenadas de Puntos de Chequeo obtenidas de la imagen			Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
de Punto	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	
CK25	495261.5225	1099477.0519	1243.1697	495261.4748	1099477.1784	1242.2163	-0.0477	0.1265	-0.9534	
CK26	495255.2565	1099482.1019	1242.8287	495255.5156	1099482.1299	1241.8586	0.2591	0.0280	-0.9701	
CK27	495063.9845	1099569.1749	1236.3627	495064.0256	1099569.1650	1236.5615	0.0411	-0.0099	0.1988	
CK28	495062.8705	1099597.3939	1235.9307	495062.8668	1099597.3508	1236.1383	-0.0037	-0.0431	0.2076	
CK29	495053.9455	1099634.9649	1235.3737	495053.9463	1099634.9226	1235.6099	0.0008	-0.0423	0.2362	
CK30	495055.0835	1099649.6789	1235.3797	495055.0812	1099649.6653	1235.5989	-0.0023	-0.0136	0.2192	
CK31	495048.3785	1099663.1029	1235.2287	495048.3153	1099663.0537	1235.7603	-0.0632	-0.0492	0.5316	
CK32	495059.5675	1099665.8489	1235.3397	495059.5861	1099665.8330	1235.5603	0.0186	-0.0159	0.2206	
CK33	495041.6635	1099668.8589	1235.0917	495041.6903	1099668.8408	1235.3259	0.0268	-0.0181	0.2342	

Tabla 26. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 120m,

Nivel de Reflectancia de diana Baja y con Geometría de Cuadros Completos.

Descripción	Coordenada	as de los Puntos	de Chequeo	Coordenadas de Puntos de Chequeo			Diferencia entre Puntos de Chequeo		
de Punto		medidos GNSS		obte	enidas de la ima	gen	medidos y l	os obtenidos d	le la imagen
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)
CK1	494989.1645	1099749.9399	1232.1787	494989.1981	1099749.9231	1232.4197	0.0336	-0.0168	0.2410
CK2	494972.2395	1099764.7289	1232.1877	494972.2664	1099764.6994	1232.4093	0.0269	-0.0295	0.2216
CK3	494961.9135	1099751.1279	1232.1677	494961.9409	1099751.0950	1232.3744	0.0274	-0.0329	0.2067
CK4	494970.8645	1099728.0649	1232.1627	494970.9119	1099728.0763	1232.3812	0.0474	0.0114	0.2185
CK5	495049.6175	1099760.1449	1235.5657	495049.5683	1099760.0866	1235.7887	-0.0492	-0.0583	0.2230
CK6	495073.0485	1099776.2869	1235.6217	495073.0111	1099776.2595	1235.8478	-0.0374	-0.0274	0.2261
CK7	495103.0645	1099781.2779	1235.9897	495103.0603	1099781.2570	1236.1786	-0.0042	-0.0209	0.1889
CK8	495086.3375	1099791.5599	1235.6597	495086.2867	1099791.5696	1235.8677	-0.0508	0.0097	0.2080
CK9	495087.7245	1099811.8609	1235.4837	495087.7310	1099811.8722	1235.6943	0.0065	0.0113	0.2106
CK10	495042.5245	1099722.1109	1235.6997	495042.5630	1099722.1006	1235.9386	0.0385	-0.0103	0.2389
CK11	495019.2485	1099693.2869	1235.0897	495019.2866	1099693.2758	1235.276	0.0381	-0.0111	0.1863
CK12	494999.5745	1099677.6369	1234.7917	494999.5750	1099677.6267	1234.9191	0.0005	-0.0102	0.1274
CK13	494990.3265	1099667.5639	1233.4807	494990.3037	1099667.5590	1233.736	-0.0228	-0.0049	0.2553
CK14	494964.1885	1099669.1769	1233.6117	494964.1673	1099669.1510	1233.8545	-0.0212	-0.0259	0.2428
CK15	494941.9945	1099636.9549	1233.5047	494942.0314	1099636.9587	1233.7189	0.0369	0.0038	0.2142
CK16	494955.1355	1099590.5429	1233.3687	494955.1584	1099590.5537	1233.521	0.0229	0.0108	0.1523
CK17	494955.9375	1099599.2609	1233.3617	494955.9854	1099599.2838	1233.505	0.0479	0.0229	0.1433
CK18	494949.8595	1099582.0349	1233.3477	494949.8879	1099581.9855	1233.4808	0.0284	-0.0494	0.1331
CK19	495002.9815	1099538.4429	1230.6727	495002.9933	1099538.4295	1230.9155	0.0118	-0.0134	0.2428
CK20	495076.9575	1099504.2929	1235.4427	495076.9464	1099504.3055	1235.678	-0.0111	0.0126	0.2353

Descripción	Coordenada	as de los Puntos	de Chequeo	Coordenad	das de Puntos d	e Chequeo	Diferencia entre Puntos de Chequeo			
de Punto		medidos GNSS		obt	enidas de la ima	igen	medidos y los obtenidos de la imagen			
	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	
	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	X (m)	Y(m)	Z (m)	
CK21	495071.4355	1099514.8719	1236.0317	495071.4516	1099514.6888	1235.8159	0.0161	-0.1831	-0.2158	
CK22	495072.9775	1099488.4239	1233.7597	495072.9716	1099488.4158	1234.0081	-0.0059	-0.0081	0.2484	
CK23	495076.5295	1099462.0759	1232.3647	495076.5762	1099462.0641	1232.562	0.0467	-0.0118	0.1973	
CK24	495080.9495	1099495.1389	1234.9477	495080.9593	1099495.1016	1235.1377	0.0098	-0.0373	0.1900	
CK25	495261.5225	1099477.0519	1243.1697	495261.4748	1099477.1784	1242.2163	-0.0477	0.1265	-0.9534	
CK26	495255.2565	1099482.1019	1242.8287	495255.5156	1099482.1299	1241.8586	0.2591	0.0280	-0.9701	
CK27	495063.9845	1099569.1749	1236.3627	495064.0256	1099569.1650	1236.5615	0.0411	-0.0099	0.1988	
CK28	495062.8705	1099597.3939	1235.9307	495062.8668	1099597.3508	1236.1383	-0.0037	-0.0431	0.2076	
CK29	495053.9455	1099634.9649	1235.3737	495053.9463	1099634.9226	1235.6099	0.0008	-0.0423	0.2362	
CK30	495055.0835	1099649.6789	1235.3797	495055.0812	1099649.6653	1235.5989	-0.0023	-0.0136	0.2192	
CK31	495048.3785	1099663.1029	1235.2287	495048.3153	1099663.0537	1235.7603	-0.0632	-0.0492	0.5316	
CK32	495059.5675	1099665.8489	1235.3397	495059.5861	1099665.8330	1235.5603	0.0186	-0.0159	0.2206	

Tabla 27. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 120m,

Nivel de Reflectancia de diana Alta-Baja y con Geometría de Cruz.

Descripció	Coordena Chequ	adas de los Pu leo medidos (untos de GNSS	Coordenada obte	as de Puntos o nidas de la im	de Chequeo agen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
n de Punto	Coordenada E(m)	Coordenad a N(m)	Coordenad a h (m)	Coordenad a E(m)	Coordenad a N(m)	Coordenad a h (m)	Coordenad a E(m)	Coordenad a N(m)	Coordenad a h (m)	
CK1	494989.1645	1099749.94	1232.1787	494989.156	1099749.93	1232.4562	-0.0088	-0.0096	0.2775	
CK2	494972.2395	1099764.73	1232.1877	494972.25	1099764.73	1232.3977	0.0102	0.0025	0.21	
СКЗ	494961.9135	1099751.13	1232.1677	494961.916	1099751.14	1232.418	0.002	0.0103	0.2503	
CK4	494970.8645	1099728.07	1232.1627	494970.876	1099728.06	1232.4487	0.0113	-0.0013	0.286	
CK5	495049.6175	1099760.15	1235.5657	495049.585	1099760.03	1235.8079	-0.0327	-0.1176	0.2422	
CK6	495073.0485	1099776.29	1235.6217	495072.99	1099776.25	1235.8381	-0.059	-0.0392	0.2164	
CK7	495103.0645	1099781.28	1235.9897	495103.002	1099781.27	1236.0696	-0.0625	-0.0041	0.0799	
CK8	495086.3375	1099791.56	1235.6597	495086.275	1099791.54	1235.766	-0.0623	-0.0166	0.1063	
CK9	495087.7245	1099811.86	1235.4837	495087.721	1099811.8	1235.5024	-0.0038	-0.0575	0.0187	
CK10	495042.5245	1099722.11	1235.6997	495042.593	1099722.05	1236.0153	0.0683	-0.0656	0.3156	
CK11	495019.2485	1099693.29	1235.0897	495019.265	1099693.24	1235.3373	0.0166	-0.0461	0.2476	
CK12	494999.5745	1099677.64	1234.7917	494999.528	1099677.66	1234.8988	-0.0466	0.0196	0.1071	
CK13	494990.3265	1099667.56	1233.4807	494990.284	1099667.58	1233.6786	-0.0428	0.0183	0.1979	
CK14	494964.1885	1099669.18	1233.6117	494964.115	1099669.21	1233.8063	-0.0738	0.0327	0.1946	
CK15	494941.9945	1099636.96	1233.5047	494941.937	1099636.99	1233.5272	-0.0576	0.0393	0.0225	
CK16	494955.1355	1099590.54	1233.3687	494955.048	1099590.56	1233.1246	-0.0873	0.0178	-0.2441	
CK17	494955.9375	1099599.26	1233.3617	494956.004	1099599.32	1233.178	0.066	0.0609	-0.1837	
CK18	494949.8595	1099582.04	1233.3477	494949.786	1099582.02	1233.0386	-0.0734	-0.0128	-0.3091	
CK19	495002.9815	1099538.44	1230.6727	495002.894	1099538.47	1230.616	-0.0876	0.0303	-0.0567	
CK20	495076.9575	1099504.29	1235.4427	495076.93	1099504.33	1235.7297	-0.0275	0.0378	0.287	
CK21	495071.4355	1099514.87	1236.0317	495071.435	1099514.89	1236.2419	-0.0007	0.0195	0.2102	
CK22	495072.9775	1099488.42	1233.7597	495073.002	1099488.36	1234.0637	0.0248	-0.0592	0.304	
CK24	495080.9495	1099495.14	1234.9477	495080.969	1099495.11	1235.256	0.0198	-0.026	0.3083	
CK25	495261.5225	1099477.05	1243.1697	495261.583	1099477.04	1243.2681	0.0607	-0.0118	0.0984	

Descripció n de Punto	Coorden Chequ	Coordenadas de los Puntos de Chequeo medidos GNSS			as de Puntos o nidas de la im	de Chequeo agen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
	Coordenada E(m)	Coordenad a N(m)	Coordenad a h (m)	Coordenad a E(m)	Coordenad a N(m)	Coordenad a h (m)	Coordenad a E(m)	Coordenad a N(m)	Coordenad a h (m)	
CK27	495063.9845	1099569.18	1236.3627	495064.056	1099569.18	1236.3417	0.0717	0.0037	-0.021	
CK28	495062.8705	1099597.39	1235.9307	495062.829	1099597.39	1236.0518	-0.0417	-0.0046	0.1211	
CK29	495053.9455	1099634.97	1235.3737	495053.971	1099634.89	1235.4806	0.0258	-0.0788	0.1069	
CK30	495055.0835	1099649.68	1235.3797	495055.075	1099649.64	1235.5247	-0.0083	-0.0416	0.145	
CK31	495048.3785	1099663.1	1235.2287	495048.361	1099663.11	1235.4561	-0.0173	0.0053	0.2274	
CK32	495059.5675	1099665.85	1235.3397	495059.572	1099665.81	1235.5175	0.0048	-0.0375	0.1778	
CK33	495041.6635	1099668.86	1235.0917	495041.707	1099668.84	1235.2891	0.0438	-0.017	0.1974	

Tabla 28. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 120m,

Nivel de Reflectancia de diana Alta y con Geometría de Cruz.

Descripció	Coordena Chequ	adas de los Pu Jeo medidos (untos de GNSS	Coordenada obter	as de Puntos o nidas de la im	de Chequeo agen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
n de Punto	Coordenada E(m)	Coordenad a N(m)	Coordenad a h (m)	Coordenad a E(m)	Coordenad a N(m)	Coordenad a h (m)	Coordenad a E(m)	Coordenad a N(m)	Coordenad a h (m)	
CK1	494989.1645	1099749.94	1232.1787	494989.212	1099749.97	1232.4368	0.0472	0.0251	0.2581	
CK2	494972.2395	1099764.73	1232.1877	494972.241	1099764.74	1232.3971	0.0014	0.0112	0.2094	
CK3	494961.9135	1099751.13	1232.1677	494961.908	1099751.15	1232.399	-0.0057	0.0208	0.2313	
CK4	494970.8645	1099728.07	1232.1627	494970.895	1099728.06	1232.4509	0.0304	-0.0084	0.2882	
CK5	495049.6175	1099760.15	1235.5657	495049.568	1099760.08	1235.8073	-0.0491	-0.0629	0.2416	
CK6	495073.0485	1099776.29	1235.6217	495072.968	1099776.26	1235.8389	-0.0804	-0.0223	0.2172	
CK7	495103.0645	1099781.28	1235.9897	495103.006	1099781.26	1236.0883	-0.059	-0.0163	0.0986	
CK8	495086.3375	1099791.56	1235.6597	495086.279	1099791.55	1235.752	-0.059	-0.0077	0.0923	
CK9	495087.7245	1099811.86	1235.4837	495087.723	1099811.89	1235.5614	-0.0015	0.0336	0.0777	

Descrinció	Coordena Chequ	adas de los Po Jeo medidos (untos de GNSS	Coordenada obter	as de Puntos o nidas de la im	de Chequeo agen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
n de Punto	Coordenada		Coordenad			Coordenad	Coordenad		Coordenad	
	E(m)	a N(M)	a n (m)	a E(m)	a N(M)	a n (m)	a =(m)	a N(M)	a n (m)	
CK10	495042.5245	1099722.11	1235.6997	495042.57	1099722.06	1235.9865	0.0457	-0.0484	0.2868	
CK11	495019.2485	1099693.29	1235.0897	495019.309	1099693.29	1235.4207	0.0603	0.0058	0.331	
CK12	494999.5745	1099677.64	1234.7917	494999.577	1099677.58	1235.084	0.0024	-0.0616	0.2923	
CK13	494990.3265	1099667.56	1233.4807	494990.34	1099667.52	1233.8964	0.0136	-0.0393	0.4157	
CK14	494964.1885	1099669.18	1233.6117	494964.186	1099669.12	1234.0365	-0.0021	-0.0585	0.4248	
CK15	494941.9945	1099636.96	1233.5047	494942.012	1099636.92	1233.9515	0.0174	-0.0354	0.4468	
CK16	494955.1355	1099590.54	1233.3687	494955.17	1099590.5	1233.7632	0.0346	-0.0412	0.3945	
CK17	494955.9375	1099599.26	1233.3617	494955.953	1099599.22	1233.7749	0.015	-0.0373	0.4132	
CK18	494949.8595	1099582.04	1233.3477	494949.913	1099581.93	1233.745	0.0538	-0.1027	0.3973	
CK19	495002.9815	1099538.44	1230.6727	495002.95	1099538.42	1230.9858	-0.0313	-0.02	0.3131	
CK20	495076.9575	1099504.29	1235.4427	495076.953	1099504.28	1235.7098	-0.0043	-0.0158	0.2671	
CK21	495071.4355	1099514.87	1236.0317	495071.453	1099514.87	1236.3097	0.0173	-0.007	0.278	
CK22	495072.9775	1099488.42	1233.7597	495072.973	1099488.36	1233.8771	-0.0045	-0.061	0.1174	
CK23	495076.5295	1099462.08	1232.3647	495076.523	1099462.16	1232.8459	-0.0069	0.0866	0.4812	
CK24	495080.9495	1099495.14	1234.9477	495080.891	1099495.1	1235.1655	-0.0585	-0.0425	0.2178	
CK25	495261.5225	1099477.05	1243.1697	495261.526	1099477.21	1243.5317	0.0037	0.1567	0.362	
CK26	495255.2565	1099482.1	1242.8287	495255.139	1099482.15	1243.3728	-0.1172	0.0454	0.5441	
CK27	495063.9845	1099569.18	1236.3627	495064.033	1099569.12	1236.6708	0.0481	-0.0562	0.3081	
CK28	495062.8705	1099597.39	1235.9307	495062.836	1099597.39	1236.2697	-0.0347	0.0007	0.339	
CK29	495053.9455	1099634.97	1235.3737	495053.954	1099634.89	1235.6378	0.0083	-0.0779	0.2641	
CK30	495055.0835	1099649.68	1235.3797	495055.072	1099649.63	1235.655	-0.0111	-0.0478	0.2753	
CK31	495048.3785	1099663.1	1235.2287	495048.357	1099663.1	1235.5443	-0.0212	-0.006	0.3156	
CK32	495059.5675	1099665.85	1235.3397	495059.555	1099665.82	1235.5729	-0.0126	-0.0271	0.2332	
CK33	495041.6635	1099668.86	1235.0917	495041.705	1099668.83	1235.3715	0.0412	-0.0333	0.2798	

Tabla 29. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 120m, Nivel de Reflectancia de diana Baja y con Geometría de Cruz.

Descripció	Coorden Chequ	adas de los P ueo medidos (untos de GNSS	Coordenada obte	as de Puntos (nidas de la im	de Chequeo agen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen		
n de Punto	Coordenada X (m)	Coordenad a Y(m)	Coordenad a Z (m)	Coordenad a X (m)	Coordenad a Y(m)	Coordenad a Z (m)	Coordenad a X (m)	Coordenad a Y(m)	Coordenad a Z (m)
CK1	494989.165	1099749.94 0	1232.179	494989.19	1099749.97 4	1232.4156	0.0255	0.0338	0.2369
CK2	494972.240	1099764.72 9	1232.188	494972.222	1099764.72 2	1232.3916	-0.0180	-0.0069	0.2039
СКЗ	494961.914	1099751.12 8	1232.168	494961.921	1099751.13 7	1232.4491	0.0071	0.0089	0.2814
CK4	494970.865	1099728.06 5	1232.163	494970.898	1099728.07 8	1232.4835	0.0331	0.0127	0.3208
CK5	495049.618	1099760.14 5	1235.566	495049.562	1099760.03 1	1235.7606	-0.0551	-0.1141	0.1949
CK6	495073.049	1099776.28 7	1235.622	495073.009	1099776.26	1235.8229	-0.0397	-0.0268	0.2012
CK7	495103.065	1099781.27 8	1235.990	495103.044	1099781.23 1	1236.115	-0.0209	-0.0474	0.1253
CK8	495086.338	1099791.56 0	1235.660	495086.315	1099791.50 7	1235.7872	-0.0229	-0.0532	0.1275
CK9	495087.725	1099811.86 1	1235.484	495087.773	1099811.84 8	1235.6388	0.0480	-0.0133	0.1551
CK10	495042.525	1099722.11 1	1235.700	495042.615	1099722.04 5	1235.9349	0.0905	-0.0657	0.2352
CK11	495019.249	1099693.28 7	1235.090	495019.294	1099693.34 2	1235.2673	0.0452	0.0554	0.1776
CK12	494999.575	1099677.63 7	1234.792	494999.56	1099677.71 6	1234.9286	-0.0147	0.0785	0.1369
CK13	494990.327	1099667.56 4	1233.481	494990.349	1099667.68	1233.776	0.0229	0.1162	0.2953
CK14	494964.189	1099669.17 7	1233.612	494964.216	1099669.31 3	1233.9774	0.0273	0.1363	0.3657

Descripció	Coorden Chequ	adas de los P ueo medidos (untos de GNSS	Coordenadas de Puntos de Chequeo obtenidas de la imagen			Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
n de Punto	Coordenada X (m)	Coordenad a Y(m)	Coordenad a Z (m)	Coordenad a X (m)	Coordenad a Y(m)	Coordenad a Z (m)	Coordenad a X (m)	Coordenad a Y(m)	Coordenad a Z (m)	
CK15	494941.995	1099636.95 5	1233.505	494942.077	1099637.19 5	1233.9453	0.0828	0.2403	0.4406	
CK16	494955.136	1099590.54 3	1233.369	494955.209	1099590.80 2	1233.704	0.0739	0.2588	0.3353	
CK17	494955.938	1099599.26 1	1233.362	494956.049	1099599.52 3	1233.7213	0.1112	0.2621	0.3596	
CK18	494949.860	1099582.03 5	1233.348	494949.97	1099582.26 5	1233.7091	0.1105	0.2295	0.3614	
CK19	495002.982	1099538.44 3	1230.673	495002.908	1099538.62 8	1231.0634	-0.0739	0.1853	0.3907	
CK20	495076.958	1099504.29 3	1235.443	495076.903	1099504.32 8	1235.7015	-0.0549	0.0345	0.2588	
CK21	495071.436	1099514.87 2	1236.032	495071.437	1099514.89 6	1236.2311	0.0019	0.0236	0.1994	
CK22	495072.978	1099488.42 4	1233.760	495072.994	1099488.40 7	1234.0948	0.0169	-0.0175	0.3351	
CK23	495076.530	1099462.07 6	1232.365	495076.671	1099462.18 5	1232.6031	0.1419	0.1091	0.2384	
CK24	495080.950	1099495.13 9	1234.948	495080.936	1099495.12 3	1235.2231	-0.0138	-0.0159	0.2754	
CK25	495261.523	1099477.05 2	1243.170	495261.564	1099477.60 5	1244.7115	0.0414	0.5533	1.5418	
CK26	495255.257	1099482.10 2	1242.829	495255.23	1099482.47 6	1244.462	-0.0265	0.3738	1.6333	
CK27	495063.985	1099569.17 5	1236.363	495064.016	1099569.16 6	1236.4463	0.0313	-0.0094	0.0836	
CK28	495062.871	1099597.39 4	1235.931	495062.774	1099597.44	1236.1157	-0.0970	0.0460	0.1850	
CK29	495053.946	1099634.96 5	1235.374	495053.945	1099634.92 9	1235.5214	-0.0004	-0.0363	0.1477	
CK30	495055.084	1099649.67 9	1235.380	495055.072	1099649.64	1235.5228	-0.0120	-0.0388	0.1431	

	Descripció	Coorden Chequ	Coordenadas de los Puntos de Chequeo medidos GNSS			Coordenadas de Puntos de Chequeo obtenidas de la imagen			Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen		
n de Punto		Coordenada X (m)	Coordenad a Y(m)	Coordenad a Z (m)	Coordenad a X (m)	Coordenad a Y(m)	Coordenad a Z (m)	Coordenad a X (m)	Coordenad a Y(m)	Coordenad a Z (m)	
	CK31	495048.379	1099663.10 3	1235.229	495048.345	1099663.12 2	1235.4061	-0.0333	0.0194	0.1774	
	CK32	495059.568	1099665.84 9	1235.340	495059.558	1099665.82 4	1235.4813	-0.0097	-0.0252	0.1416	
	CK33	495041.664	1099668.85 9	1235.092	495041.719	1099668.88 9	1235.2515	0.0553	0.0296	0.1598	

Tabla 30. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 80m,

	Coordenada	s de los Puntos	de Chequeo	Coordenada	as de Puntos	de Chequeo	Diferencia entre Puntos de Chequeo		
Descripció		medidos GNSS		obte	nidas de la im	agen	medidos y lo	os obtenidos o	de la imagen
n de Punto	Coordenad a E(m)	Coordenada N(m)	Coordenad a h (m)	Coordenad a E(m)	Coordenad a N(m)	Coordenad a h (m)	Coordenad a E(m)	Coordenad a N(m)	Coordenad a h (m)
CK1	494989.164 5	1099749.9400	1232.1787	494989.199	1099749.94	1232.2444	0.0347	0.0040	0.0657
CK2	494972.239 5	1099764.7290	1232.1877	494972.243	1099764.71	1232.3046	0.0038	-0.0150	0.1169
СКЗ	494961.913 5	1099751.1280	1232.1677	494961.944	1099751.11	1232.1433	0.0306	-0.0220	-0.0244
CK4	494970.864 5	1099728.0650	1232.1627	494970.891	1099728.04	1232.0651	0.0269	-0.0290	-0.0976
CK5	495049.617 5	1099760.1450	1235.5657	495049.596	1099760.11	1235.6593	-0.0215	-0.0400	0.0936
CK6	495073.048 5	1099776.2870	1235.6217	495072.974	1099776.28	1235.8356	-0.0748	-0.0050	0.2139
CK7	495103.064 5	1099781.2780	1235.9897	495102.982	1099781.25	1236.3571	-0.0826	-0.0270	0.3674

Nivel de Reflectancia de diana Alta-Baja y con Geometría de Cruz.

Descrinció	Coordenada	s de los Puntos medidos GNSS	de Chequeo	Coordenada obte	as de Puntos nidas de la im	de Chequeo agen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
n de Punto	Coordenad a E(m)	Coordenada N(m)	Coordenad a h (m)	Coordenad a E(m)	Coordenad a N(m)	Coordenad a h (m)	Coordenad a E(m)	Coordenad a N(m)	Coordenad a h (m)	
CK8	495086.337 5	1099791.5600	1235.6597	495086.252	1099791.58	1235.9663	-0.0854	0.0180	0.3066	
СК9	495087.724 5	1099811.8610	1235.4837	495087.661	1099811.89	1235.8632	-0.0633	0.0260	0.3795	
CK10	495042.524 5	1099722.1110	1235.6997	495042.577	1099722.08	1235.6604	0.0523	-0.0320	-0.0393	
CK11	495019.248 5	1099693.2870	1235.0897	495019.271	1099693.25	1234.9519	0.0228	-0.0380	-0.1378	
CK12	494999.574 5	1099677.6370	1234.7917	494999.649	1099677.61	1234.4806	0.0749	-0.0250	-0.3111	
CK13	494990.326 5	1099667.5640	1233.4807	494990.432	1099667.53	1233.2484	0.1050	-0.0350	-0.2323	
CK14	494964.188 5	1099669.1770	1233.6117	494964.306	1099669.14	1233.1187	0.1177	-0.0410	-0.4930	
CK15	494941.994 5	1099636.9550	1233.5047	494942.11	1099636.88	1232.7783	0.1151	-0.0800	-0.7264	
CK16	494955.135 5	1099590.5430	1233.3687	494955.319	1099590.5	1232.6957	0.1834	-0.0460	-0.6730	
CK17	494955.937 5	1099599.2610	1233.3617	494956.086	1099599.26	1232.7308	0.1485	-0.0040	-0.6309	
CK18	494949.859 5	1099582.0350	1233.3477	494950.077	1099581.99	1232.6779	0.2175	-0.0480	-0.6698	
CK19	495002.981 5	1099538.4430	1230.6727	495003.097	1099538.54	1230.6749	0.1158	0.0930	0.0022	
CK20	495076.957 5	1099504.2930	1235.4427	495076.998	1099504.32	1235.7156	0.0402	0.0290	0.2729	
CK21	495071.435 5	1099514.8720	1236.0317	495071.438	1099514.88	1236.2346	0.0022	0.0090	0.2029	
CK22	495072.977 5	1099488.4240	1233.7597	495073.013	1099488.38	1234.0684	0.0356	-0.0430	0.3087	
CK23	495076.529 5	1099462.0760	1232.3647	495076.623	1099462.04	1232.6122	0.0938	-0.0410	0.2475	

Descripció	Coordenada	s de los Puntos medidos GNSS	de Chequeo	Coordenada obte	as de Puntos (nidas de la im	de Chequeo agen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
n de Punto	Coordenad	Coordenada	Coordenad	Coordenad	Coordenad	Coordenad	Coordenad	Coordenad	Coordenad	
	a E(m)	N(m)	a h (m)	a E(m)	a N(m)	a h (m)	a E(m)	a N(m)	a h (m)	
CK24	495080.949 5	1099495.1390	1234.9477	495081.011	1099495.11	1235.2305	0.0610	-0.0280	0.2828	
CK27	495063.984 5	1099569.1750	1236.3627	495063.947	1099569.19	1236.599	-0.0374	0.0120	0.2363	
CK28	495062.870 5	1099597.3940	1235.9307	495062.831	1099597.42	1236.1615	-0.0395	0.0250	0.2308	
CK29	495053.945 5	1099634.9650	1235.3737	495053.984	1099634.95	1235.569	0.0385	-0.0140	0.1953	
CK30	495055.083 5	1099649.6790	1235.3797	495055.108	1099649.67	1235.6079	0.0242	-0.0110	0.2282	
CK31	495048.378 5	1099663.1030	1235.2287	495048.369	1099663.1	1235.3893	-0.0091	-0.0020	0.1606	
CK32	495059.567 5	1099665.8490	1235.3397	495059.532	1099665.82	1235.6006	-0.0354	-0.0320	0.2609	
СК33	495041.663 5	1099668.8590	1235.0917	495041.721	1099668.81	1235.1967	0.0577	-0.0450	0.1050	

Tabla 31. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 80m,

Nivel de Reflectancia de diana Alta y con Geometría de Cruz.

Descrinción	Coordenada	s de los Puntos o medidos GNSS	le Chequeo	Coordenad obte	las de Puntos d enidas de la ima	le Chequeo Igen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
de Punto	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	
CK1	494989.1645	1099749.9400	1232.1787	494989.188	1099749.9450	1232.3275	0.0233	0.0050	0.1488	
CK2	494972.2395	1099764.7290	1232.1877	494972.216	1099764.7200	1232.3252	-0.0233	-0.0090	0.1375	
CK3	494961.9135	1099751.1280	1232.1677	494961.888	1099751.1020	1232.1924	-0.0255	-0.0260	0.0247	
CK4	494970.8645	1099728.0650	1232.1627	494970.858	1099728.0380	1232.2139	-0.0068	-0.0270	0.0512	
CK5	495049.6175	1099760.1450	1235.5657	495049.617	1099760.0880	1235.7444	-0.0002	-0.0570	0.1787	

Decerinción	Coordenada	s de los Puntos o medidos GNSS	le Chequeo	Coordenad	las de Puntos c enidas de la ima	le Chequeo	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
Descripcion do Punto	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	
	E(m)	N(m)	h (m)	E(m)	N(m)	h (m)	E(m)	N(m)	h (m)	
CK6	495073.0485	1099776.2870	1235.6217	495073.007	1099776.2760	1235.8541	-0.0418	-0.0110	0.2324	
CK7	495103.0645	1099781.2780	1235.9897	495103.049	1099781.2510	1236.2659	-0.0156	-0.0270	0.2762	
CK8	495086.3375	1099791.5600	1235.6597	495086.31	1099791.5610	1235.9437	-0.0279	0.0010	0.2840	
CK9	495087.7245	1099811.8610	1235.4837	495087.75	1099811.8510	1235.7849	0.0251	-0.0100	0.3012	
CK10	495042.5245	1099722.1110	1235.6997	495042.566	1099722.1060	1235.7487	0.0413	-0.0050	0.0490	
CK11	495019.2485	1099693.2870	1235.0897	495019.233	1099693.2720	1235.0714	-0.0156	-0.0150	-0.0183	
CK12	494999.5745	1099677.6370	1234.7917	494999.6	1099677.6370	1234.6344	0.0254	0.0000	-0.1573	
CK13	494990.3265	1099667.5640	1233.4807	494990.369	1099667.5510	1233.4071	0.0422	-0.0130	-0.0736	
CK14	494964.1885	1099669.1770	1233.6117	494964.248	1099669.1570	1233.3002	0.0594	-0.0200	-0.3115	
CK15	494941.9945	1099636.9550	1233.5047	494942.077	1099636.9220	1232.9799	0.0825	-0.0330	-0.5248	
CK16	494955.1355	1099590.5430	1233.3687	494955.274	1099590.5480	1232.8843	0.1386	0.0050	-0.4844	
CK17	494955.9375	1099599.2610	1233.3617	494955.939	1099599.2440	1232.921	0.0013	-0.0170	-0.4407	
CK18	494949.8595	1099582.0350	1233.3477	494950.039	1099582.0340	1232.8468	0.1797	-0.0010	-0.5009	
CK19	495002.9815	1099538.4430	1230.6727	495003.08	1099538.5290	1230.7852	0.0981	0.0860	0.1125	
CK20	495076.9575	1099504.2930	1235.4427	495077.001	1099504.3100	1235.6855	0.0431	0.0170	0.2428	
CK21	495071.4355	1099514.8720	1236.0317	495071.423	1099514.8860	1236.1925	-0.0127	0.0140	0.1608	
CK22	495072.9775	1099488.4240	1233.7597	495073.003	1099488.4100	1234.1071	0.0259	-0.0140	0.3474	
CK23	495076.5295	1099462.0760	1232.3647	495076.649	1099462.0980	1232.6837	0.1190	0.0220	0.3190	
CK24	495080.9495	1099495.1390	1234.9477	495081.02	1099495.1050	1235.2057	0.0707	-0.0340	0.2580	
CK27	495063.9845	1099569.1750	1236.3627	495063.924	1099569.1260	1236.5156	-0.0602	-0.0490	0.1529	
CK28	495062.8705	1099597.3940	1235.9307	495062.806	1099597.3790	1236.1168	-0.0645	-0.0150	0.1861	
CK29	495053.9455	1099634.9650	1235.3737	495053.959	1099634.9410	1235.5636	0.0137	-0.0240	0.1899	
CK30	495055.0835	1099649.6790	1235.3797	495055.089	1099649.6660	1235.5851	0.0055	-0.0130	0.2054	
CK31	495048.3785	1099663.1030	1235.2287	495048.347	1099663.1210	1235.4231	-0.0311	0.0180	0.1944	
CK32	495059.5675	1099665.8490	1235.3397	495059.534	1099665.8230	1235.5604	-0.0331	-0.0260	0.2207	

Descripción	Coordenada	Coordenadas de los Puntos de Chequeo medidos GNSS			Coordenadas de Puntos de Chequeo obtenidas de la imagen			Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen		
de Punto	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	
CK33	495041.6635	1099668.8590	1235.0917	495041.708	1099668.8430	1235.2831	0.0446	-0.0160	0.1914	

Tabla 32. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 80m,

Nivel de Reflectancia de diana Baja y con Geometría de Cruz.

Descripción	Coordenada	s de los Puntos c medidos GNSS	le Chequeo	Coordenadas de Puntos de Chequeo obtenidas de la imagen			Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
de Punto	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	
CK1	494989.1645	1099749.9400	1232.1787	494989.2444	1099749.9010	1232.3201	0.0799	-0.0390	0.1414	
CK2	494972.2395	1099764.7290	1232.1877	494972.2808	1099764.6920	1232.3380	0.0413	-0.0370	0.1503	
CK3	494961.9135	1099751.1280	1232.1677	494961.9766	1099751.0580	1232.1993	0.0631	-0.0700	0.0316	
CK4	494970.8645	1099728.0650	1232.1627	494970.9527	1099727.9850	1232.2031	0.0882	-0.0800	0.0404	
CK5	495049.6175	1099760.1450	1235.5657	495049.5544	1099760.1010	1235.7368	-0.0631	-0.0440	0.1711	
CK6	495073.0485	1099776.2870	1235.6217	495072.9558	1099776.2920	1235.8447	-0.0927	0.0050	0.2230	
CK7	495103.0645	1099781.2780	1235.9897	495102.9331	1099781.2730	1236.2333	-0.1314	-0.0050	0.2436	
CK8	495086.3375	1099791.5600	1235.6597	495086.1991	1099791.5810	1235.9098	-0.1384	0.0210	0.2501	
CK9	495087.7245	1099811.8610	1235.4837	495087.6209	1099811.9130	1235.7535	-0.1036	0.0520	0.2698	
CK10	495042.5245	1099722.1110	1235.6997	495042.5795	1099722.0830	1235.7537	0.0550	-0.0280	0.0540	
CK11	495019.2485	1099693.2870	1235.0897	495019.2919	1099693.2350	1235.0627	0.0434	-0.0520	-0.0270	
CK12	494999.5745	1099677.6370	1234.7917	494999.7085	1099677.5720	1234.6366	0.1340	-0.0650	-0.1551	
CK13	494990.3265	1099667.5640	1233.4807	494990.5105	1099667.4780	1233.4255	0.1840	-0.0860	-0.0552	
CK14	494964.1885	1099669.1770	1233.6117	494964.4014	1099669.0700	1233.3562	0.2129	-0.1070	-0.2555	
CK15	494941.9945	1099636.9550	1233.5047	494942.2758	1099636.7920	1232.9834	0.2813	-0.1630	-0.5213	
CK16	494955.1355	1099590.5430	1233.3687	494955.5127	1099590.4160	1232.8772	0.3772	-0.1270	-0.4915	

Descripción	Coordenada	Coordenadas de los Puntos de Chequeo medidos GNSS			las de Puntos c enidas de la ima	le Chequeo agen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
de Punto	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	
CK17	494955.9375	1099599.2610	1233.3617	494956.1967	1099599.1540	1232.9152	0.2592	-0.1070	-0.4465	
CK18	494949.8595	1099582.0350	1233.3477	494950.2906	1099581.8970	1232.8248	0.4311	-0.1380	-0.5229	
CK19	495002.9815	1099538.4430	1230.6727	495003.2503	1099538.4650	1230.7688	0.2688	0.0220	0.0961	
CK20	495076.9575	1099504.2930	1235.4427	495076.9729	1099504.2910	1235.6353	0.0154	-0.0020	0.1926	
CK21	495071.4355	1099514.8720	1236.0317	495071.4218	1099514.8400	1236.1324	-0.0137	-0.0320	0.1007	
CK22	495072.9775	1099488.4240	1233.7597	495072.9738	1099488.4050	1234.0267	-0.0037	-0.0190	0.2670	
CK23	495076.5295	1099462.0760	1232.3647	495076.5971	1099462.0690	1232.5690	0.0676	-0.0070	0.2043	
CK24	495080.9495	1099495.1390	1234.9477	495080.9551	1099495.0950	1235.1449	0.0056	-0.0440	0.1972	
CK27	495063.9845	1099569.1750	1236.3627	495063.9521	1099569.0860	1236.5016	-0.0324	-0.0890	0.1389	
CK28	495062.8705	1099597.3940	1235.9307	495062.8420	1099597.3300	1236.1265	-0.0285	-0.0640	0.1958	
CK29	495053.9455	1099634.9650	1235.3737	495054.0008	1099634.8800	1235.5813	0.0553	-0.0850	0.2076	
CK30	495055.0835	1099649.6790	1235.3797	495055.1238	1099649.6190	1235.6055	0.0403	-0.0600	0.2258	
CK31	495048.3785	1099663.1030	1235.2287	495048.3866	1099663.0550	1235.4191	0.0081	-0.0480	0.1904	
CK32	495059.5675	1099665.8490	1235.3397	495059.5631	1099665.7840	1235.5775	-0.0044	-0.0650	0.2378	
CK33	495041.6635	1099668.8590	1235.0917	495041.7734	1099668.7820	1235.2778	0.1099	-0.0770	0.1861	

Tabla 33. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 100m,

Nivel de Reflectancia de diana Alta-Baja y con Geometría de Cruz.

Descripción de Punto	Coordenada	Coordenadas de los Puntos de Chequeo medidos GNSS			Coordenadas de Puntos de Chequeo obtenidas de la imagen			Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen		
	CoordenadaCoordenadaCoordenadaX (m)Y(m)Z (m)			Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	
CK1	494989.1645	1099749.9400	1232.1787	494989.2533 1099749.8794 1232.2916			0.0888	-0.0606	0.1129	

Descripción de Punto	Coordenada	as de los Puntos medidos GNSS	de Chequeo	Coordenad obt	das de Puntos d enidas de la ima	e Chequeo gen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	
CK2	494972.2395	1099764.7290	1232.1877	494972.2769	1099764.7354	1232.317	0.0374	0.0064	0.1293	
CK3	494961.9135	1099751.1280	1232.1677	494961.9162	1099751.1034	1232.1865	0.0027	-0.0246	0.0188	
CK4	494970.8645	1099728.0650	1232.1627	494970.8059	1099728.0299	1232.0739	-0.0586	-0.0351	-0.0888	
CK5	495049.6175	1099760.1450	1235.5657	495049.6663	1099760.0979	1235.7455	0.0488	-0.0471	0.1798	
CK6	495073.0485	1099776.2870	1235.6217	495073.0349	1099776.2716	1235.868	-0.0136	-0.0154	0.2463	
CK7	495103.0645	1099781.2780	1235.9897	495103.0344	1099781.3376	1236.1786	-0.0301	0.0596	0.1889	
CK8	495086.3375	1099791.5600	1235.6597	495086.2998	1099791.5230	1235.8373	-0.0377	-0.0370	0.1776	
CK9	495087.7245	1099811.8610	1235.4837	495087.6540	1099811.8474	1235.6041	-0.0705	-0.0136	0.1204	
CK10	495042.5245	1099722.1110	1235.6997	495042.6245	1099722.0631	1235.8229	0.1000	-0.0479	0.1232	
CK11	495019.2485	1099693.2870	1235.0897	495019.2854	1099693.2095	1234.9845	0.0369	-0.0775	-0.1052	
CK12	494999.5745	1099677.6370	1234.7917	494999.5828	1099677.4719	1234.4838	0.0083	-0.1651	-0.3079	
CK13	494990.3265	1099667.5640	1233.4807	494990.4130	1099667.4338	1233.2784	0.0865	-0.1302	-0.2023	
CK14	494964.1885	1099669.1770	1233.6117	494964.2041	1099669.0169	1233.1458	0.0156	-0.1601	-0.4659	
CK15	494941.9945	1099636.9550	1233.5047	494941.9725	1099636.7323	1232.5726	-0.0220	-0.2227	-0.9321	
CK16	494955.1355	1099590.5430	1233.3687	494955.1356	1099590.3456	1232.2905	0.0001	-0.1974	-1.0782	
CK17	494955.9375	1099599.2610	1233.3617	494955.9170	1099599.0894	1232.3547	-0.0205	-0.1716	-1.0070	
CK18	494949.8595	1099582.0350	1233.3477	494949.8927	1099581.7871	1232.1174	0.0332	-0.2479	-1.2303	
CK19	495002.9815	1099538.4430	1230.6727	495003.1689	1099538.4165	1230.5549	0.1874	-0.0265	-0.1178	
CK20	495076.9575	1099504.2930	1235.4427	495076.9840	1099504.3450	1235.7004	0.0265	0.0520	0.2577	
CK21	495071.4355	1099514.8720	1236.0317	495071.3748	1099514.8910	1236.2662	-0.0607	0.0190	0.2345	
CK22	495072.9775	1099488.4240	1233.7597	495073.0710	1099488.4395	1234.0486	0.0935	0.0155	0.2889	
CK24	495080.9495	1099495.1390	1234.9477	495081.0065	1099495.1263	1235.2003	0.0570	-0.0127	0.2526	
CK25	495261.5225	1099477.0520	1243.1697	495261.2813	1099477.5051	1245.0592	-0.2412	0.4531	1.8895	
CK26	495255.2565	1099482.1020	1242.8287	495255.0216	1099482.5003	1244.6667	-0.2349	0.3983	1.8380	
CK27	495063.9845	1099569.1750	1236.3627	495063.9845	1099569.2047	1236.7789	0.0000	0.0297	0.4162	
CK28	495062.8705	1099597.3940	1235.9307	495062.8788	1099597.4468	1236.4034	0.0083	0.0528	0.4727	

Descripción de Punto	Coordenada	s de los Puntos medidos GNSS	de Chequeo	Coordenad obt	das de Puntos d enidas de la ima	e Chequeo Igen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	Coordenada X (m)	Coordenada Y(m)	Coordenada Z (m)	
CK29	495053.9455	1099634.9650	1235.3737	495054.0150	1099634.9180	1235.7156	0.0695	-0.0470	0.3419	
CK30	495055.0835	1099649.6790	1235.3797	495055.0649	1099649.6180	1235.6805	-0.0186	-0.0610	0.3008	
CK31	495048.3785	1099663.1030	1235.2287	495048.3673	1099663.1001	1235.4072	-0.0112	-0.0029	0.1785	
CK32	495059.5675	1099665.8490	1235.3397	495059.5532	1099665.7903	1235.6156	-0.0143	-0.0587	0.2759	
CK33	495041.6635	1099668.8590	1235.0917	495041.7350	1099668.8194	1235.2222	0.0715	-0.0396	0.1305	

Tabla 34. Comparación de la diferencia de las coordenadas para la componente E, N,h de puntos de chequeo para vuelo con altura de 100m,

Descrinción	Coordenada	s de los Puntos o medidos GNSS	de Chequeo	Coordenac obte	las de Puntos c enidas de la ima	le Chequeo agen	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
de Punto	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	
CK1	494989.1645	1099749.9400	1232.1787	494989.2395	1099749.8890	1232.3580	0.0750	-0.0510	0.1793	
CK2	494972.2395	1099764.7290	1232.1877	494972.2673	1099764.7360	1232.3264	0.0278	0.0070	0.1387	
CK3	494961.9135	1099751.1280	1232.1677	494961.9294	1099751.1280	1232.2540	0.0159	0.0000	0.0863	
CK4	494970.8645	1099728.0650	1232.1627	494970.8212	1099728.0720	1232.2518	-0.0433	0.0070	0.0891	
CK5	495049.6175	1099760.1450	1235.5657	495049.6677	1099760.0900	1235.9023	0.0502	-0.0550	0.3366	
CK6	495073.0485	1099776.2870	1235.6217	495073.0228	1099776.2030	1235.7098	-0.0257	-0.0840	0.0881	
CK7	495103.0645	1099781.2780	1235.9897	495103.0735	1099781.2740	1235.5837	0.0090	-0.0040	-0.4060	
CK8	495086.3375	1099791.5600	1235.6597	495086.3141	1099791.4860	1235.4640	-0.0234	-0.0740	-0.1957	
CK9	495087.7245	1099811.8610	1235.4837	495087.6956	1099811.8140	1235.1427	-0.0289	-0.0470	-0.3410	
CK10	495042.5245	1099722.1110	1235.6997	495042.6277	1099722.0690	1236.1134	0.1032	-0.0420	0.4137	
CK11	495019.2485	1099693.2870	1235.0897	495019.2444	1099693.2940	1235.4038	-0.0041	0.0070	0.3141	
CK12	494999.5745	1099677.6370	1234.7917	494999.5550	1099677.5720	1235.0106	-0.0195	-0.0650	0.2189	
CK13	494990.3265	1099667.5640	1233.4807	494990.3881	1099667.5350	1233.6919	0.0616	-0.0290	0.2112	

Nivel de Reflectancia de diana Alta y con Geometría de Cruz.

Descripción	Coordenada	s de los Puntos o medidos GNSS	le Chequeo	Coordenadas de Puntos de Chequeo obtenidas de la imagen			Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
de Punto	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	
CK14	494964.1885	1099669.1770	1233.6117	494964.2373	1099669.1590	1233.6737	0.0488	-0.0180	0.0620	
CK15	494941.9945	1099636.9550	1233.5047	494942.0452	1099636.9500	1233.1222	0.0507	-0.0050	-0.3825	
CK16	494955.1355	1099590.5430	1233.3687	494955.1812	1099590.5940	1232.7684	0.0457	0.0510	-0.6003	
CK17	494955.9375	1099599.2610	1233.3617	494956.0351	1099599.3120	1232.8601	0.0976	0.0510	-0.5016	
CK18	494949.8595	1099582.0350	1233.3477	494949.9615	1099582.0390	1232.5956	0.1020	0.0040	-0.7521	
CK19	495002.9815	1099538.4430	1230.6727	495003.1287	1099538.5330	1230.2740	0.1472	0.0900	-0.3987	
CK20	495076.9575	1099504.2930	1235.4427	495076.9803	1099504.3670	1235.7190	0.0228	0.0740	0.2763	
CK21	495071.4355	1099514.8720	1236.0317	495071.3678	1099514.8770	1236.3481	-0.0677	0.0050	0.3164	
CK22	495072.9775	1099488.4240	1233.7597	495073.0837	1099488.4880	1233.9160	0.1062	0.0640	0.1563	
CK24	495080.9495	1099495.1390	1234.9477	495080.9619	1099495.1870	1235.1057	0.0124	0.0480	0.1580	
CK25	495261.5225	1099477.0520	1243.1697	495261.6522	1099477.3900	1244.6420	0.1297	0.3380	1.4723	
CK26	495255.2565	1099482.1020	1242.8287	495255.3579	1099482.3690	1244.2351	0.1014	0.2670	1.4064	
CK27	495063.9845	1099569.1750	1236.3627	495064.0108	1099569.1460	1236.8256	0.0263	-0.0290	0.4629	
CK28	495062.8705	1099597.3940	1235.9307	495062.8784	1099597.4220	1236.3673	0.0079	0.0280	0.4366	
CK29	495053.9455	1099634.9650	1235.3737	495053.9988	1099634.8980	1235.7269	0.0533	-0.0670	0.3532	
CK30	495055.0835	1099649.6790	1235.3797	495055.0503	1099649.6200	1235.6956	-0.0332	-0.0590	0.3159	
CK31	495048.3785	1099663.1030	1235.2287	495048.3604	1099663.1250	1235.5103	-0.0181	0.0220	0.2816	
CK32	495059.5675	1099665.8490	1235.3397	495059.5600	1099665.8360	1235.5938	-0.0075	-0.0130	0.2541	
CK33	495041.6635	1099668.8590	1235.0917	495041.7214	1099668.8500	1235.4202	0.0579	-0.0090	0.3285	

Tabla 35. Comparación de la diferencia de las coordenadas para la componente E, N, h de puntos de chequeo para vuelo con altura de 100m,

Nivel de Reflectancia de diana Baja y con Geometría de Cruz.

Decerinción	Coordenada	s de los Puntos o medidos GNSS	de Chequeo	Coordenad	las de Puntos c enidas de la ima	le Chequeo	Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
Descripcion de Punto	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	Coordenada	
	E(m)	N(m)	h (m)	E(m)	N(m)	h (m)	E(m)	N(m)	h (m)	
CK1	494989.1645	1099749.9400	1232.1787	494989.2781	1099749.8944	1232.4012	0.1136	-0.0456	0.2225	
CK2	494972.2395	1099764.7290	1232.1877	494972.2934	1099764.7426	1232.3788	0.0539	0.0136	0.1911	
CK3	494961.9135	1099751.1280	1232.1677	494961.9774	1099751.1304	1232.3149	0.0639	0.0024	0.1472	
CK4	494970.8645	1099728.0650	1232.1627	494970.8741	1099728.0519	1232.2859	0.0096	-0.0131	0.1232	
CK5	495049.6175	1099760.1450	1235.5657	495049.6751	1099760.1061	1235.9248	0.0576	-0.0389	0.3591	
CK6	495073.0485	1099776.2870	1235.6217	495073.0210	1099776.2898	1235.7518	-0.0275	0.0028	0.1301	
CK7	495103.0645	1099781.2780	1235.9897	495103.0193	1099781.3305	1235.6106	-0.0452	0.0525	-0.3791	
CK8	495086.3375	1099791.5600	1235.6597	495086.2888	1099791.5486	1235.5405	-0.0487	-0.0114	-0.1192	
CK9	495087.7245	1099811.8610	1235.4837	495087.6565	1099811.9189	1235.2504	-0.0680	0.0579	-0.2333	
CK10	495042.5245	1099722.1110	1235.6997	495042.6419	1099722.0707	1236.1088	0.1174	-0.0403	0.4091	
CK11	495019.2485	1099693.2870	1235.0897	495019.3143	1099693.2272	1235.4159	0.0658	-0.0598	0.3262	
CK12	494999.5745	1099677.6370	1234.7917	494999.6278	1099677.5056	1235.022	0.0533	-0.1314	0.2303	
CK13	494990.3265	1099667.5640	1233.4807	494990.4609	1099667.4611	1233.7229	0.1344	-0.1029	0.2422	
CK14	494964.1885	1099669.1770	1233.6117	494964.3153	1099669.0538	1233.7222	0.1268	-0.1232	0.1105	
CK15	494941.9945	1099636.9550	1233.5047	494942.1872	1099636.7943	1233.2241	0.1927	-0.1607	-0.2806	
CK16	494955.1355	1099590.5430	1233.3687	494955.2971	1099590.4495	1232.9451	0.1616	-0.0935	-0.4236	
CK17	494955.9375	1099599.2610	1233.3617	494956.0979	1099599.1366	1233.0098	0.1604	-0.1244	-0.3519	
CK18	494949.8595	1099582.0350	1233.3477	494950.0925	1099581.9141	1232.7974	0.2330	-0.1209	-0.5503	
CK19	495002.9815	1099538.4430	1230.6727	495003.2049	1099538.4272	1230.5081	0.2234	-0.0158	-0.1646	
CK20	495076.9575	1099504.2930	1235.4427	495076.9820	1099504.3086	1235.7595	0.0245	0.0156	0.3168	
CK21	495071.4355	1099514.8720	1236.0317	495071.3910	1099514.8617	1236.4136	-0.0445	-0.0103	0.3819	
CK22	495072.9775	1099488.4240	1233.7597	495073.0568	1099488.4329	1234.0134	0.0793	0.0089	0.2537	
CK24	495080.9495	1099495.1390	1234.9477	495080.9800	1099495.1168	1235.1798	0.0305	-0.0222	0.2321	
CK25	495261.5225	1099477.0520	1243.1697	495261.4854	1099477.6977	1244.4088	-0.0371	0.6457	1.2391	
CK26	495255.2565	1099482.1020	1242.8287	495255.1694	1099482.6601	1244.0137	-0.0871	0.5581	1.1850	
CK27	495063.9845	1099569.1750	1236.3627	495063.9930	1099569.1130	1236.8098	0.0085	-0.0620	0.4471	

Descripción	Coordenada	s de los Puntos o medidos GNSS	de Chequeo	Coordenadas de Puntos de Chequeo obtenidas de la imagen			Diferencia entre Puntos de Chequeo medidos y los obtenidos de la imagen			
de Punto	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	Coordenada E(m)	Coordenada N(m)	Coordenada h (m)	
CK28	495062.8705	1099597.3940	1235.9307	495062.8933	1099597.3697	1236.3285	0.0228	-0.0243	0.3978	
CK29	495053.9455	1099634.9650	1235.3737	495054.0109	1099634.8821	1235.6906	0.0654	-0.0829	0.3169	
CK30	495055.0835	1099649.6790	1235.3797	495055.0567	1099649.5895	1235.6556	-0.0268	-0.0895	0.2759	
CK31	495048.3785	1099663.1030	1235.2287	495048.3791	1099663.0907	1235.4861	0.0006	-0.0123	0.2574	
CK32	495059.5675	1099665.8490	1235.3397	495059.5949	1099665.8055	1235.5349	0.0274	-0.0435	0.1952	
CK33	495041.6635	1099668.8590	1235.0917	495041.7426	1099668.8090	1235.3837	0.0791	-0.0500	0.2920	