Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Civil

Efecto en el módulo resiliente producto del contenido de agua en subrasantes

Trabajo de Graduación

Para obtener el grado de Licenciatura en Ingeniería Civil

Presenta:

Priscilla Alfaro Varela

Directora de Proyecto de Graduación:

Ing. Tania Ávila Esquivel, M.Sc.

Ciudad Universitaria Rodrigo Facio

Costa Rica Junio, 2021

Fecha: 2021, junio, 29

investigación.

El suscrito, **Priscilla Alfaro Varela**, cédula 1-1678-0107, estudiante de la carrera de Licenciatura en Ingeniería Civil de la Universidad de Costa Rica, con número de carné **B50242**, manifiesta que es autora del Proyecto Final de Graduación **Efecto en el módulo resiliente producto del contenido de agua en subrasantes**, bajo la dirección de la Ing. Tania Ávila Esquivel, MSc; quien en consecuencia tiene derechos compartidos sobre los resultados de esta

Asimismo, hago traspaso de los derechos de utilización del presente trabajo a la Universidad de Costa Rica, para fines académicos: docencia, investigación, acción social y divulgación.

Nota: De acuerdo con la Ley de Derechos de Autor y Derechos Conexos N° 6683, Artículo 7 (versión actualizada el 02 de julio de 2001); "no podrá suprimirse el nombre del autor en las publicaciones o reproducciones, ni hacer interpolaciones, sin una conveniente distinción entre el texto original y las modificaciones o adiciones originales". Además, el autor conserva el derecho moral sobre la obra, Artículo 13 de esta ley, por lo que es obligatorio citar la fuente de origen cuando se utilice información contenida en esta obra.

i

Hoja de aprobación

Comité asesor:

Ing. Tania Ávila Esquivel, MSc. Directora

Ing. José Pablo Aguiar Moya, PhD. Asesor

Ing. Marcia/Cordero/Sandí, MSc. Asesora

Estudiante:

Priscilla Alfaro Varela

Dedicatoria

A mis papás, mi gran apoyo.

Agradecimientos

A la Ing. Tania Ávila Esquivel por su gran apoyo, sus consejos y por compartir su conocimiento conmigo. Gracias por ser pieza fundamental en todo este proceso y acompañarme a realizarlo de la mejor manera posible.

A mis asesores, el Ing. José Pablo Aguiar y la Ing. Marcia Cordero Sandí, quienes siempre tuvieron gran disposición para ayudarme y aclararme cualquier duda que me surgiera en el camino.

Al Ing. Óscar Valerio, jefe del Laboratorio de Geotecnia, así como a los técnicos, Alfredo, Steven y Mauricio, quienes me brindaron su ayuda para poder ejecutar todos los ensayos en estos tiempos tan difíciles.

A mis amigos de universidad quienes estuvieron ahí desde el inicio y con quienes pasé los mejores momentos de la universidad.

A mi familia, a Andrey y a María por ayudarme de muchas maneras y estar siempre para mí.

Finalmente, agradezco a todas aquellas personas que de una u otra forma me ayudaron a culminar esta etapa.

TABLA DE CONTENIDOS

1	INTRO	DUCCIÓN	1
	1.1 Ju	stificaciónstificación	1
	1.1.1	Problema específico	1
	1.1.2	Importancia	2
	1.1.3	Antecedentes teóricos y prácticos del problema	3
	1.2 Ob	ojetivos	5
	1.2.1	Objetivo General	5
	1.2.2	Objetivos Específicos	5
	1.3 De	elimitación del problema	5
	1.3.1	Alcance	5
	1.3.2	Limitaciones	6
	1.4 Me	etodología	7
	1.4.1	Fase 1: Revisión bibliográfica	9
	1.4.2	Fase 2: Desarrollo experimental	9
	1.4.3	Fase 3: Calibración del modelo	9
	1.4.4	Fase 4: Análisis de resultados	10
	1.4.5	Fase 5: Informe final	10
2	MARCO) TEÓRICO	11
	2.1 Pr	opiedades de los suelos	11
	2.1.1	Relaciones de fases del suelo	11
	2.1.2	Granulometría	13
	2.1.3	Gravedad específica	15
	2.1.4	Consistencia del suelo – Límites de Atterberg	16
	2.1.5	Grado de compactación y humedad óptima	17
	2.1.6	Sistemas de clasificación de suelos	19

	2.2	Med	cánica de suelos no saturados	23
	2.3	Estr	ructura de un pavimento	24
	2.3	.1	Efecto de la subrasante	26
	2.4	Mód	dulo resiliente (Mr)	27
	2.4	.1	Factores que afectan el Mr	29
	2.4	.2	Determinación del Mr	32
	2.5	Cur	va Característica Suelo-Agua	36
	2.5	.1	Relación entre el Mr y la SWCC	38
3	MU	ESTR	RAS DE SUBRASANTE	40
	3.1	Sele	ección de puntos de muestreo	40
	3.2	Ubi	cación	42
	3.3	Gra	do de saturación	43
4	ENS	SAYO	S DE LABORATORIO	47
	4.1	Car	acterización física	47
	4.1	.1	Cruce Atenas (M-0556-2020)	47
	4.1	.2	Guácimo (M-0604-2020)	49
	4.1	.3	Sede Liberia UCR (M-0666-2020)	52
	4.2	Cur	va característica Suelo-Agua (SWCC)	54
	4.3	Mód	dulo resiliente	56
	4.3	.1	Cruce Atenas	57
	4.3.2		Guácimo	60
	4.3	.3	Sede Liberia UCR	62
5	CAL	.IBR/	ACIÓN Y MODELACIÓN MATEMÁTICA	65
	5.1	Cali	bración de modelos	65
	5.1	.1	Procedimiento	65
	5 1	2	Cruce Atenas	67

	5.1.3	Guácimo	73
	5.1.4	Sede Liberia UCR	79
	5.2 M	Nodelación matemática	86
	5.2.1	Modelos para suelos con IP ≤ 15	90
	5.2.2	Modelos para suelos con IP > 15	94
	5.2.3	Resumen de modelos	99
6	CONC	CLUSIONES Y RECOMENDACIONES	102
	6.1 R	lesumen de resultados y conclusiones	102
	6.2 R	ecomendaciones	105
R	EFERENC	CIAS BIBLIOGRÁFICAS	108
Α	PÉNDICE	S Y ANEXOS	113
	APÉNDI	CES	113
	ANEXOS	3	150

ÍNDICE DE FIGURAS

Figura 1. Diagrama metodológico de la investigación	8
Figura 2. Fases de un suelo	11
Figura 3. Diagrama relación de fases de un suelo	12
Figura 4. Ejemplos de curvas granulométricas para arenas y gravas	14
Figura 5. Ejemplos de curvas granulométricas para arcillas y limos	15
Figura 6. Límites de Atterberg	17
Figura 7. Curva de densidad contra contenido de humedad para proctor modificado y es	tándar
	18
Figura 8. Curva de saturación teórica	19
Figura 9. Sistema de clasificación SUCS	22
Figura 10. Zonas de suelo saturado y parcialmente saturado	23
Figura 11. Partes y distribución de carga en un pavimento flexible	25
Figura 12. Partes y distribución de carga en un pavimento rígido	25
Figura 13. Esquema de esfuerzos en la subrasante	27
Figura 14. Deformación acumulada con el número de aplicaciones del esfuerzo desviado	or28
Figura 15. Curva característica de un suelo	37
Figura 16. SWCC vs Mr, respecto a la succión del suelo	39
Figura 17. Distribución espacial de los tipos de suelo clasificados según SUCS	40
Figura 18. Distribución por tipo de suelo según a) clasificación SUCS, b) granulometría	41
Figura 19. Ubicación de los puntos en estudio	43
Figura 20. Mapa de saturación promedio para la época lluviosa	44
Figura 21. Mapa de saturación promedio para la época seca	45
Figura 22. Suelo Cruce Atenas-Orotina (M-0556-2020)	47
Figura 23. Curva granulométrica suelo Cruce Atenas-Orotina (M-0556-2020)	48
Figura 24. Proctor estándar suelo Cruce Atenas-Orotina (M-0556-2020)	49
Figura 25. Suelo Guácimo (M-0604-2020)	50
Figura 26. Curva granulométrica suelo Guácimo (M-0604-2020)	50
Figura 27. Proctor estándar suelo Guácimo (M-0604-2020)	51
Figura 28. Suelo Sede Liberia UCR (M-0666-2020)	52
Figura 29. Curva granulométrica suelo Sede Liberia UCR (M-0666-2020)	52
Figura 30. Proctor estándar suelo Sede Liberia UCR (M-0666-2020)	53

Figura 31. Curva SWCC suelo Cruce Atenas (M-0556-2020)55
Figura 32. Curva SWCC suelo Guácimo (M-0604-2020)56
Figura 33. Curva SWCC suelo Sede Liberia UCR (M-0666-2020)56
Figura 34. Puntos de succión matricial para ensayo MR, Cruce Atenas58
Figura 35. Datos de módulo obtenidos para diferentes succiones (a) 177 kPa, (b) 134 kPa, (c
26 kPa y (d) 12 kPa, Cruce Atenas58
Figura 36. Datos de módulo obtenidos para diferentes succiones, Cruce Atenas59
Figura 37. Puntos de succión matricial para ensayo MR, Guácimo60
Figura 38. Datos de módulo obtenidos para diferentes succiones (a) 153 kPa, (b) 58 kPa y (c
11 kPa, Guácimo61
Figura 39. Datos de módulo obtenidos para diferentes succiones, Guácimo62
Figura 40. Puntos de succión matricial para ensayo MR, Sede Liberia UCR63
Figura 41. Datos de módulo obtenidos para diferentes succiones (a) 177 kPa, (b) 41 kPa, (c)
12 kPa y (d) 5 kPa, Sede Liberia UCR63
Figura 42. Datos de módulo obtenidos para diferentes succiones, Sede Liberia UCR64
Figura 43. Efecto de las variables analizadas en el MR (a) Invariante de esfuerzos, (b) Esfuerzo
cortante octaédrico, (c) Succión matricial y (d) Presión de confinamiento68
Figura 44. Ajuste de los datos medidos vs los calculados para el MUM, Cruce Atenas69
Figura 45. Ajuste de los datos medidos vs los calculados para el modelo polinómico, Cruce
Atenas70
Figura 46. Ajuste de los datos medidos vs los calculados para el modelo exponencial, Cruce
Atenas71
Figura 47. Datos medidos vs los calculados para los modelos, Cruce Atenas72
Figura 48. Efecto de las variables analizadas en el MR (a) Invariante de esfuerzos, (b) Esfuerzo
cortante octaédrico, (c) Succión matricial y (d) Presión de confinamiento74
Figura 49. Ajuste de los datos medidos vs los calculados para el MUM75
Figura 50. Ajuste de los datos medidos vs los calculados para el modelo polinómico, Guácimo
76
Figura 51. Ajuste de los datos medidos vs los calculados para el modelo exponencial, Guácimo
77
Figura 52. Datos medidos vs los calculados para los modelos, Guácimo79

Figura 53. Efecto de las variables analizadas en el MR (a) Invariante de esfuerzos, (b) Esfuerzo
cortante octaédrico, (c) Succión matricial y (d) Presión de confinamiento80
Figura 54. Ajuste de los datos medidos vs los calculados para el MUM, Sede Liberia UCR 81
Figura 55. Ajuste de los datos medidos vs los calculados para el modelo polinómico, Sede
Liberia UCR83
Figura 56. Ajuste de los datos medidos vs los calculados para el modelo exponencial, Sede
Liberia UCR84
Figura 57. Datos medidos vs los calculados para los modelos85
Figura 58. Curva granulométrica del suelo, Paquera86
Figura 59. Valores medidos vs calculados para modelos con todos los suelos88
Figura 60. Efecto de las variables analizadas en el MR (a) Invariante de esfuerzos, (b) Esfuerzo
cortante octaédrico, (c) Succión matricial, (d) Presión de confinamiento, y (e) índice de
plasticidad91
Figura 61. Ajuste de los datos medidos vs los calculados para el MUM ajustado con IP93
Figura 62. Ajuste de los datos medidos vs los calculados para el modelo exponencial ajustado
con IP94
Figura 63. Efecto de las variables analizadas en el MR (a) Invariante de esfuerzos, (b) Esfuerzo
cortante octaédrico, (c) Succión matricial, (d) Presión de confinamiento, y (e) índice de
plasticidad96
Figura 64. Ajuste de los datos medidos vs los calculados para el modelo polinómico ajustado
97
Figura 65. Ajuste de los datos medidos vs los calculados para el modelo polinómico ajustado
con IP98
Figura 66. Datos medidos vs los calculados de modelos para suelos con IP ≤ 15100
Figura 67. Datos medidos vs los calculados de modelos para suelos con IP > 15 101

ÍNDICE DE CUADROS

Cuadro 1. Valores típicos de gravedad específica según el tipo de grano16
Cuadro 2. Valores típicos de gravedad específica según el tipo de suelo16
Cuadro 3. Parámetros del ensayo de compactación18
Cuadro 4. Sistema de clasificación AASHTO 194521
Cuadro 5. Relaciones empíricas para obtener el Módulo Resiliente33
Cuadro 6. Modelos mecanísticos para Mr basados en estados de esfuerzos34
Cuadro 7. Modelos mecanísticos que incorporan mecánica de suelos no saturados35
Cuadro 8. Resumen de las regresiones lineales generalizadas para cada modelo36
Cuadro 9. Ubicación de puntos de muestreo43
Cuadro 10. Características físicas del suelo Cruce Atenas-Orotina (M-0556-2020)48
Cuadro 11. Relación de vacíos y porosidad a γ =1534kg/m3 y w=27,1% (M-0556-2020)49
Cuadro 12. Características físicas del suelo Guácimo
Cuadro 13. Relación de vacíos y porosidad a γ =1302kg/m3 y w=37,2% (M-0604-2020)51
Cuadro 14. Características físicas del suelo Sede Liberia UCR53
Cuadro 15. Relación de vacíos y porosidad a γ =1634 kg/m³ y w=19,3% (M-0666-2020)53
Cuadro 16. Variables utilizadas para obtener el contenido volumétrico de saturación55
Cuadro 17. Datos utilizados para la ejecución del ensayo de MR, Cruce Atenas57
Cuadro 18. Datos utilizados para la ejecución del ensayo de MR, Guácimo60
Cuadro 19. Datos utilizados para la ejecución del ensayo de MR, Sede Liberia UCR62
Cuadro 20. Variables más utilizadas para predecir el Mr65
Cuadro 21. Análisis de correlación en las variables utilizadas67
Cuadro 22. Resultados obtenidos de la regresión lineal para el MUM, Cruce Atenas69
Cuadro 23. Resultados obtenidos de la regresión lineal para el modelo polinómico, Cruce Atenas
70
Cuadro 24. Resultados obtenidos de la regresión lineal para el modelo exponencial, Cruce
Atenas71
Cuadro 25. Resultados obtenidos para los modelos calibrados, Cruce Atenas72
Cuadro 26. Análisis de la covarianza en las variables utilizadas73
Cuadro 27. Resultados obtenidos de la regresión lineal para el MUM, Guácimo75
Cuadro 28. Resultados obtenidos de la regresión lineal para el modelo polinómico, Guácimo
76

Cuadro 29. Resultados obtenidos de la regresión lineal para el modelo exponencial, Guácimo
77
Cuadro 30. Resultados obtenidos para los modelos calibrados, Guácimo
Cuadro 31. Análisis de la covarianza en las variables utilizadas80
Cuadro 32. Resultados obtenidos de la regresión lineal para el MUM, Sede Liberia UCR81
Cuadro 33. Resultados obtenidos de la regresión lineal para el modelo polinómico, Sede Liberia
UCR82
Cuadro 34. Resultados obtenidos de la regresión lineal para el modelo exponencial, Sede Liberia
UCR83
Cuadro 35. Resultados obtenidos para los modelos calibrados, Sede Liberia UCR84
Cuadro 36. Características físicas del suelo Paquera86
Cuadro 37. Parámetros de modelos considerando todos los suelos
Cuadro 38. Clasificación de suelos por plasticidad89
Cuadro 39. Análisis de la covarianza en las variables utilizadas90
Cuadro 40. Resultados obtenidos de la regresión lineal para el MUM ajustado con IP92
Cuadro 41. Resultados obtenidos de la regresión lineal para el modelo exponencial ajustado
con IP94
Cuadro 42. Análisis de la covarianza en las variables utilizadas95
Cuadro 43. Resultados obtenidos de la regresión para el modelo polinómico ajustado97
Cuadro 44. Resultados obtenidos de la regresión para el modelo polinómico ajustado con II
98
Cuadro 45. Resultados obtenidos para los modelos para suelos con IP \leq 1599
Cuadro 46. Resultados obtenidos para los modelos para suelos con IP > 15 100

Alfaro Varela, Priscilla.

Efecto en el módulo resiliente producto del contenido de agua en subrasantes.

Proyecto de graduación-Ingeniería Civil-San José. C.R.:

P. Alfaro V., 2021

xiii, 112, [46]h; ils. col.-42 refs

Resumen

El objetivo de la presente investigación consiste en generar modelos matemáticos con los

cuales se pueda predecir el valor del módulo resiliente (Mr) de las subrasantes a diferentes

contenidos de humedad. Para lograrlo se estudiaron tres suelos de diferentes puntos del país

los cuales corresponden a limos de alta y baja plasticidad.

Se realizaron los ensayos de granulometría, límites de Atterberg, gravedad específica, proctor

estándar y se determinaron las curvas características Suelo-Agua mediante el modelo

propuesto por Chon kan (2017). El ensayo de Mr se realizó mediante el protocolo propuesto

por Ávila (2017) para suelos de grano fino. Las succiones del ensayo se determinaron mediante

el grado de saturación al que se encuentran sometidas las subrasantes, el cual se obtuvo del

mapa de saturaciones del Lanamme (2021).

En los resultados se observa que existe una alta dependencia entre el contenido de humedad

(incorporado mediante la succión matricial) y el módulo de resiliencia en el limo de baja

plasticidad. Para los limos de alta plasticidad no se evidencia tal comportamiento.

Se realiza una base de datos donde se incorpora un cuarto suelo clasificado como arena limosa,

analizado por Ávila (2017).

A partir de los resultados obtenidos se proponen cuatro modelos, de predicción de Mr,

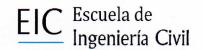
clasificados según la plasticidad de los suelos. Para índices de plasticidad menores 15, los

modelos predicen adecuadamente valores de módulo menores a 350000 kPa. Cuando el índice

de plasticidad de los suelos es mayor a 15 se predicen adecuadamente valores de módulo

menores a 270000 kPa. Se recomienda incluir diferentes tipos de suelos en los modelos con el

fin de obtener modelos más precisos. P.A.V.


MÓDULO RESILIENTE, SUBRASANTE, SATURACIÓN, DISEÑO, PAVIMENTOS

Ing. Tania Ávila Esquivel

Escuela de Ingeniería Civil

Xiii

05 de julio del 2021 **EIC-0799-2021**

Señorita Priscilla Alfaro Varela Presente

Estimada estudiante:

Según el artículo 39 del reglamento de Trabajos Finales de Graduación, la Escuela de Ingeniería Civil se complace en otorgarle la aprobación con distinción de su Trabajo Final de Graduación denominado "Efecto en el módulo resiliente producto del contenido de agua en subrasantes"

Por este motivo le manifestamos nuestras más sinceras felicitaciones por su dedicación y empeño.

Atentamente,

Ing∠FÍor Muñoz Umaña, M.Sc. Directora Escuela de Ingeniería Civil

GAA

C. Archivo

Universidad de Costa Rica Facultad de Ingeniería ElC Escuela de Ingeniería Civil

1 INTRODUCCIÓN

1.1 Justificación

1.1.1 Problema específico

La red vial es la base del desarrollo y crecimiento de un país. Las carreteras, además de facilitar las necesidades básicas como la educación, alimentación, salud y trabajo, permiten al ser humano satisfacer su necesidad de transportarse. Por estas razones, un adecuado diseño de la infraestructura vial incide positivamente en el crecimiento social y económico de una región (Rivera, 2015 citado por Guzmán, 2015).

Los pavimentos se encuentran sometidos a altos volúmenes de tráfico durante su vida útil. Un pavimento no está absuelto de sufrir deterioro a través de los años. Sin embargo, en Costa Rica, y en muchos países del mundo, los pavimentos fallan antes de alcanzar su vida útil, lo que se puede originar debido a un diseño inadecuado de la estructura, malas prácticas constructivas, inadecuada selección de los materiales, entre otros.

En Costa Rica el diseño de pavimentos rígidos y flexibles, se realiza en su mayoría utilizando la guía de diseño de la Asociación Americana de Carreteras Estatales y Oficiales de Transporte (AASHTO) de 1993. AASHTO 93 es un método que se basa en un modelo empírico del año 1958, generado a partir de los resultados obtenidos de la pista de prueba AASHO en Ottawa, Illinois. Esta metodología fue elaborada bajo condiciones de diseño específicas dentro la que destacan niveles de tránsito, condiciones climáticas y características topográficas de la zona.

La cantidad de vehículos y los niveles de carga a los que se encuentra sometida una carretera, varían a lo largo de su vida útil. Las condiciones climáticas a las que se enfrentará la vía en nuestro país, difieren considerablemente a las condiciones bajo las cuales se generó el modelo AASHTO 93, por lo que Ávila (2017) recomienda describir de manera más adecuada, el comportamiento de los materiales mediante pruebas más eficientes.

Hoy en día se utilizan metodologías que consideran el módulo resiliente (Mr) como una propiedad fundamental, para evaluar la capacidad de soporte de los materiales que constituyen la estructura del pavimento (Garnica, Gómez & Sesma, 2002, citado por Chaves, 2017). Este parámetro no es una propiedad constante del suelo, sino que depende de varios factores como

la densidad seca, el estado de esfuerzos, el contenido de humedad, saturación, número de repeticiones de carga, energía de compactación, tixotropía del suelo, entre otros (Ávila, 2017).

Introducir la mecánica de suelos no saturados en el diseño y análisis de pavimentos, permite obtener estructuras considerando las condiciones bajo las que se encuentra el material, esto debido a que contempla la premisa de que los suelos no se encuentran bajo el 100% de saturación todo el tiempo. Se busca trabajar con metodologías que permitan generar modelos que representen la fluctuación del Mr, involucrando el contenido de humedad, de los cuales se logren obtener diseños que respondan de manera eficiente a las condiciones reales que enfrentará la estructura del pavimento.

1.1.2 Importancia

Para realizar el diseño de un pavimento se considera el suelo en condición crítica, es decir, condición saturada. Los suelos en Costa Rica no necesariamente se encuentran siempre bajo esta condición, por esto resulta importante conocer el comportamiento de los mismos bajo diferentes contenidos de agua. El módulo resiliente es una propiedad fundamental para evaluar y caracterizar la capacidad de soporte de los materiales.

Generar modelos con los cuales se predice el comportamiento del módulo resiliente en función de la variación de la cantidad de agua presente en las subrasantes, permite obtener información precisa para elaborar diseños de estructuras de pavimentos optimizados. Incorporar las condiciones de sitio bajo las que se encuentran los diferentes tipos de suelos, en el diseño, genera que estos además de ser más eficientes sean económicos. De manera que, desarrollar soluciones técnicas debidamente calibradas disminuye la necesidad de incorporar factores de seguridad de forma indiscriminada lo que, por lo general, incurre en un sobrediseño de la estructura y un aumento en el costo de la obra.

Adicionalmente, se cuenta con una base de datos en la que se muestran las condiciones de humedad bajo las que se encuentran algunos suelos del país en las diferentes épocas del año. Esta información y los modelos desarrollados sirven de insumo a instituciones como el Laboratorio Nacional de Materiales y Modelos Estructurales de la Universidad de Costa Rica (LanammeUCR) para realizar diseños o análisis de estructuras de pavimentos más eficientes, ya que estos buscan describir de forma adecuada el comportamiento de los materiales con los que se trabaja (Ávila, 2017).

1.1.3 Antecedentes teóricos y prácticos del problema

Ávila (2017) realizó un estudio sobre la cuantificación del efecto en la rigidez de la subrasante debido al contenido de agua mediante la medición del módulo resiliente. El trabajo se realizó con una arena limosa de Paquera, Puntarenas. Los especímenes fueron estudiados en porcentajes más húmedos y más secos que la humedad óptima y en esa condición. Desarrolló una serie de ensayos tanto para la caracterización física de los materiales, como la caracterización mecánica, mediante el ensayo de módulo resiliente. Basándose en el protocolo propuesto por Cary (2008), Ávila generó un modelo capaz de predecir, considerando el contenido de agua, los valores de Mr menores a 300 MPa y, con alguna subestimación, los mayores a 300 MPa. Los resultados obtenidos solamente aplican en materiales de grano fino con características similares a las de una arena limosa.

Chon kan (2017) realizó una investigación con el fin de generar un modelo matemático para predecir Curvas Características Suelo-Agua de suelos utilizados en carreteras de Costa Rica. Trabajó con suelos de 12 diferentes puntos del país entre los cuales se encuentran Liberia, Tempisque, Jacó, Paquera, Orotina, Zarcero, entre otros. Por medio del Aparato de Richards, Celdas Tempe y Papel Filtro, se determinaron los diferentes rangos de succión requeridos. Finalmente, propuso un modelo matemático basado en el modelo de Fredlund & Xing (1994) con el cual se pueden obtener las Curvas características Suelo-Agua (SWCC, por sus siglas en inglés) para diferentes suelos siempre y cuando sean compatibles con las condiciones establecidas durante el desarrollo del modelo.

En el 2016, Garnica, Mestas y Pérez realizaron una publicación para el Instituto Mexicano de Transporte, la cual se basaba en la fluctuación del módulo de resiliencia después de la construcción del pavimento. La investigación se efectuó a cinco suelos tomados de diferentes puntos de México, correspondientes a una arcilla roja, una arena limosa, un limo y dos arcillas negras. Luego de determinar las propiedades índice de los materiales se implementó el protocolo NCHRP 1-28A para la elaboración de la prueba de módulo resiliente. Las muestras fueron tratadas en condición húmeda, seca y condición óptima. Los resultados obtenidos permitieron la elaboración de un modelo que estima la variación del módulo resiliente según el contenido de agua, no obstante, estos resultados quedan sujetos a las condiciones del material.

Cary y Zapata (2011) presentan los resultados de una investigación en la cual se evalúa la respuesta resiliente del suelo sujeto a un estado de esfuerzos cuando está parcialmente

saturado, donde se emplearon material para base granular y material de subrasante. El fin de la investigación fue mejorar el Modelo Universal para la predicción del Mr incorporando la succión matricial como una variable fundamental. El modelo propuesto es válido tanto para condiciones de suelo no saturado como para suelos saturados. Además, mejora las predicciones obtenidas con el modelo utilizado en la AASHTO MEPDG, el cual se basa solamente en el contenido de humedad o grado de saturación como indicadores indirectos del nivel de succión.

Mohs (2008) establece en su trabajo final de graduación un estudio para la obtención de módulos de resiliencia contextualizados a Costa Rica, tomando en cuenta el contenido de humedad y el grado de compactación. Los puntos definidos para el estudio fueron extraídos del margen sobre Río Grande, Orotina y de un costado de la Costanera Sur, Quepos. Mediante la caracterización de los materiales y la implementación del ensayo triaxial, generó modelos para suelos con contenido de humedad óptimo y saturado; no obstante, no logró establecer relaciones entre el módulo de resiliencia y el contenido de humedad. Recomienda la inclusión de otras variables como la succión para discutir de manera más adecuada el efecto de la humedad en el Mr.

Herrera (2007) realizó una investigación en la cual analiza el comportamiento estructural de un tipo de suelo utilizado como subrasante de pavimentos, mediante la valoración del módulo resiliente bajo diversas condiciones de densidad y saturación. Se caracterizó un suelo del sector de La Abundancia, Ciudad Quesada, mediante ensayos de campo y laboratorio. Los especímenes se trabajaron en condición de humedad óptima, además de condición seca y húmeda. Por tanto, estableció un modelo que relaciona el Mr en función de la humedad del suelo con respecto a su valor óptimo, el cual aplica para saturaciones entre 60% y 100%. No obstante, en este modelo no se considera el efecto del esfuerzo desviador ni del esfuerzo confinante, por lo que se considera una primera aproximación del valor de Mr bajo diferentes condiciones de humedad. Se identificó que al saturar el tipo de suelo en estudio se inducen decrementos en el valor de Mr por lo que recomienda la inclusión de este fenómeno desde la etapa de diseño.

Las diferentes investigaciones constituyen una referencia de utilidad para el presente proyecto. Estas se involucran de manera directa o indirecta con el tema en estudio. Los diferentes autores propusieron modelos relacionando la variable del contenido de humedad y el módulo resiliente. No obstante, los modelos propuestos por Cary et al. (2011) y Garnica et al. (2016), se basan

en condiciones climáticas diferentes a las del país. Aquellos modelos propuestos por Herrera (2007) y Mohs (2008) están restringidos a condiciones particulares. Por tanto, a partir del 2017 con el trabajo de investigación Ávila, se introduce un modelo capaz de predecir el valor de Mr a partir del contenido de humedad de la subrasante. Finalmente, Chon kan (2017) propone modelos de predicción de SWCC, para diferentes tipos de suelo, lo que agiliza el procedimiento de obtención de las mismas, y esto resulta de interés para modelar el flujo de la humedad en los suelos.

1.2 Objetivos

1.2.1 Objetivo General

Desarrollar un modelo matemático de predicción del módulo resiliente que considere el efecto de la humedad, para cuantificar el impacto en el desempeño de suelos.

1.2.2 Objetivos Específicos

- Identificar diferentes tipos de suelos utilizados como subrasante sometidos a diferentes contenidos de humedad, con el fin de determinar materiales representativos para el estudio basados en investigaciones previas.
- Determinar las propiedades físicas y mecánicas de los materiales, mediante ensayos de laboratorio, para conocer a profundidad el comportamiento de los suelos a utilizar.
- Obtener datos mediante el ensayo de módulo resiliente en condiciones de humedad variable, para generar un modelo que determine el valor del módulo resiliente de las diferentes subrasantes.

1.3 Delimitación del problema

1.3.1 Alcance

Se realizó un estudio con enfoque cuantitativo, donde se tuvo un alcance explicativo donde se abarcó el comportamiento de un suelo bajo los efectos del contenido de humedad. Además, tuvo un alcance correlativo, debido a que se centró en generar modelos con los cuales se puede predecir el valor del módulo resiliente, considerando el contenido de agua presente en las subrasantes. El proyecto se desarrolló con tres tipos de suelos tomados de puntos donde se desarrollan proyectos de infraestructura vial en Costa Rica.

Para caracterizar los materiales se realizó un ensayo de granulometría, gravedad específica, límites de Atterberg y proctor estándar. Para determinar la SWCC se utilizaron los modelos generados por Chon kan (2017), asociados a suelos utilizados en proyectos carreteros. De los tres puntos de extracción seleccionados se tomaron muestras las cuales se trabajaron en condición seca, humedad óptima y condición húmeda, donde se realizaron de dos o tres especímenes por punto, según la variabilidad entre las muestras.

Cabe destacar que se utilizaron las cargas y compactación típicas de carreteras para así simular adecuadamente los ensayos. La determinación del módulo resiliente se realizó mediante el protocolo de ensayo propuesto por Ávila (2017), para un suelo que se clasifica como arena limosa. Este ensayo se limita a las condiciones del equipo. Es decir, los resultados obtenidos en esta investigación se encuentran sujetos al equipo utilizado, a los diferentes materiales utilizados como subrasantes y a los métodos de ensayo seleccionados. Los modelos desarrollados se deben implementar en materiales con características similares.

1.3.2 Limitaciones

La investigación se limita debido que, al requerir suelos con diferentes características es necesario que estos se encuentren en zonas distintas. Esto implica lejanía entre los sitios de muestreo y el punto donde se realizan los ensayos. Debido a la pandemia que se ha presentado en el país desde marzo del 2020 hasta la actualidad, se seleccionaron puntos de muestreo relativamente cercanos al LanammeUCR. Esto, con el fin de que las giras de campo se pudieran realizar en el transcurso de un único día.

Por otra parte, la cantidad de material disponible limitó la cantidad de ensayos a realizar, a pesar de aumentar la cantidad de suelo requerido con un factor de desperdicio y de adicionar material por la posibilidad de requerir repetir ensayos.

Las curvas SWCC que se utilizan están ligadas a las condiciones óptimas obtenidas en el laboratorio. Por lo que se requirió de una adecuada caracterización de los materiales, para así garantizar que estos suelos cumplen con las condiciones establecidas, ya que cualquier aplicación realizada fuera del contexto establecido, no necesariamente se adecuará a los resultados propuestos por Chon kan (2017).

Se realizan pruebas en el LanammeUCR, por lo que se dependió de la disponibilidad del laboratorio y los técnicos la cual fue considerablemente restringida a causa de la pandemia por

el COVID19. Además, la falta de experiencia del estudiante para ejecutar los ensayos es una limitante en el desarrollo de la investigación. Esto se abarcó mediante capacitaciones por parte de funcionarios del LanammeUCR, para reducir la variabilidad de los resultados como consecuencia de esta falta de experiencia.

Los ensayos de módulo se realizan en el equipo Triaxial Dinámico de GCTS por lo que el alcance de los ensayos se limita a las fuerzas y precisión propias del equipo. Se trabajó con presiones de confinamiento menores a los 250 kPa para evitar el uso de agua como medio confinante y así reducir la complejidad del ensayo. Para utilizar el equipo se debía contar, la totalidad del tiempo, con la asistencia de un técnico especializado lo que el avance se veía comprometido a la disponibilidad del mismo.

1.4 Metodología

En la siguiente figura se muestran las fases ejecutadas en el desarrollo del proyecto, seguidamente se describe cada una de ellas.

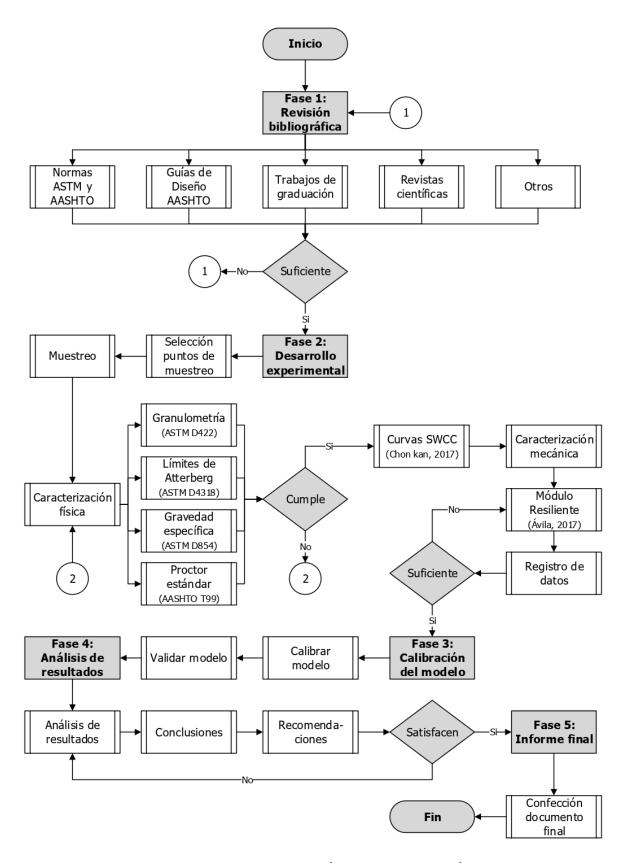


Figura 1. Diagrama metodológico de la investigación

1.4.1 Fase 1: Revisión bibliográfica

Por medio de trabajos finales de graduación, libros, revistas científicas y otras fuentes, se recopiló la información utilizada de respaldo teórico para la investigación, donde se incluyen los temas de módulos resiliente, mecánica de suelos no saturados, importancia de la subrasante en el diseño de pavimentos, entre otros. Para esto se incluyen investigaciones previas, normativas y procedimientos existentes para los ensayos que se deben realizar y publicaciones realizadas por instituciones, nacionales o internacionales, que abarquen información relacionada al tema en estudio, así como otras fuentes de información que sirviesen de sustento teórico en el desarrollo del proyecto.

1.4.2 Fase 2: Desarrollo experimental

Una vez finalizada la recopilación de información se procede a seleccionaron los suelos con los que se trabajó. Para esto, se identificaron tres suelos que puedan ser utilizados en el país como subrasantes. Según recomendaciones brindadas por Ávila (2017) los suelos seleccionados son de tipo MH y ML (según su clasificación SUCS). Además, estos forman parte de la investigación realizada por Chon kan (2017).

Seguidamente, se procedió a la implementación de los ensayos para caracterizar físicamente los materiales. Se realizan los ensayos de granulometría (ASTM D422), límites de Atterberg (ASTM D4318), gravedad específica (ASTM D854) y proctor estándar (AASHTO T99). Una vez caracterizado el material se obtuvieron las curvas SWCC para cada uno de los suelos, a partir del modelo propuesto por Chon kan (2017) para suelos con contenido limoso.

Para la ejecución del ensayo de módulo resiliente se utilizó el protocolo establecido por Ávila (2017). Cada muestra se trabajó en humedad óptima, condición seca y húmeda, donde se utilizaron de dos a tres especímenes por condición. Las saturaciones a analizar se determinaron por medio de los valores que establece el mapa de humedades de Costa Rica para los puntos en estudio.

1.4.3 Fase 3: Calibración del modelo

En esta etapa se calibran la ecuación de Cary (2008) y las ecuaciones propuestas por Ávila (2017) en las que se toman en cuenta variables como el grado de saturación, los esfuerzos de confinamiento y desviador y la presión de poro de agua y aire. Una vez generadas las

ecuaciones se les aplica un análisis estadístico de los datos, para así lograr la mejor correlación posible entre los datos y el modelo.

Al obtener los resultados de la calibración se procedió a generar nuevos modelos matemáticos que determinen el valor del módulo resiliente de las diferentes subrasantes estudiadas según el contenido de humedad al que se encuentran sometidas. Adicionalmente, para estos modelos generados se incluyó en el análisis los resultados del suelo estudiado por Ávila (2017) para así contar con una base de datos más robusta.

1.4.4 Fase 4: Análisis de resultados

Mediante la obtención de los resultados de los ensayos de laboratorio y la calibración de los modelos, se procede a realizar el respectivo análisis de datos. Además, se realizó una comparación entre los modelos generados donde se determinan las principales diferencias según el tipo de suelo en estudio y su aporte para el diseño de pavimentos más eficientes.

1.4.5 Fase 5: Informe final

Al concluir la investigación se generó un informe en el cual se detallan los resultados obtenidos en cada fase y el análisis respectivo. A partir de estos se generaron conclusiones y recomendaciones asociadas al cumplimiento de objetivos, principalmente a los modelos propuestos para los diferentes tipos de suelos de Costa Rica.

2 MARCO TEÓRICO

2.1 Propiedades de los suelos

El suelo se define, en términos ingenieriles, como el material no cementado que se encuentra sobre la roca de la corteza terrestre compuesto de acumulaciones de partículas de minerales rocosos, materia orgánica y otras partículas relativamente sueltas, con espacios vacíos entre las partículas sólidas que son ocupados con líquido y gas. A diferencia de muchos otros materiales estudiados en la ingeniería, el suelo puede ser fácilmente separado en sus partículas constituyentes (Das, 2014).

Los suelos son el principal material natural sobre el cual se construyen las estructuras de pavimento. Al funcionar como cimentación, el suelo influye notablemente en el comportamiento del pavimento ante las acciones de cargas vehiculares y del clima y cómo estas pueden afectar sus propiedades mecánicas. Conociendo las características del material es posible aproximar el desempeño que este puede tener aun antes de realizar ensayos más específicos para determinar las propiedades mecánicas del suelo, como el de módulo resiliente. De aquí la importancia de caracterizar el suelo con el que se va a trabajar mediante ensayos estandarizados y clasificarlo con sistemas como el SUCS o el AASHTO (Chaves, 2017).

2.1.1 Relaciones de fases del suelo

En un suelo se distinguen tres fases constituyentes: la sólida, la líquida y la gaseosa. La fase sólida está comprendida por partículas minerales del suelo, la líquida por el agua y la gaseosa sobre todo por el aire (ver figura 2).

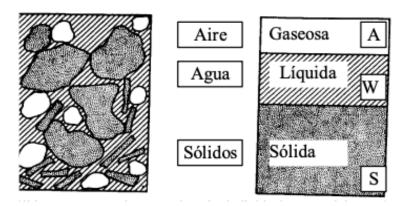


Figura 2. Fases de un suelo Fuente: (Duque & Escobar, 2016)

Para describir la relación entre las fases del suelo se utiliza un diagrama esquemático el cual relaciona los diferentes volúmenes de un suelo con las diversas masas (ver Figura 3).

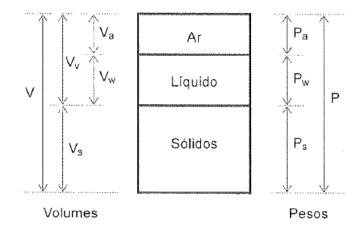


Figura 3. Diagrama relación de fases de un suelo Fuente: (Pinto, 2006)

Donde,

V: Volumen total de la muestra de suelo

Va: Volumen del aire en la muestra de suelo

Vw: Volumen del agua de la muestra de suelo

V_s: Volumen de los sólidos del suelo

V_v: Volumen de los vacíos del suelo

P: Peso total de la muestra de suelo

Pa: Peso del aire de la muestra de suelo

Pw: Peso del agua del suelo

Ps: Peso de los sólidos del suelo

En la Ingeniería Geotécnica se utilizan, por lo general, las siguientes relaciones de fase: relación de vacíos, porosidad, grado de saturación y contenido de humedad. Pinto (2006), Duque y Escobar (2016) definen estos conceptos de la siguiente manera:

2.1.1.1 Relación de vacíos "e"

Es la relación entre el volumen de vacíos de vacíos y el volumen de los sólidos. Se expresa normalmente en forma decimal (ver ecuación 1). Teóricamente puede variar entre 0 e infinito pero los valores reales fluctúan entre 0,25 y 15.

$$e = \frac{V_v}{V_s}$$
 (Ecuación 1)

2.1.1.2 Porosidad "n"

Es la relación entre el volumen de vacíos y el volumen total de la muestra de suelo que se analiza (ver ecuación 2). Se expresa normalmente en porcentaje. Teóricamente puede variar de 0% a 100%. Los valores reales que se han obtenido van de 25% a 95%.

$$n(\%) = \frac{V_v}{V_T} \times 100$$
 (Ecuación 2)

2.1.1.3 Grado de saturación "S"

Se define como el grado o la proporción en que los espacios vacíos de un suelo contienen agua (ver ecuación 3). Se expresa como un porcentaje en relación con el volumen total de vacíos. Es la relación porcentual entre el volumen de agua en una masa de suelo y el volumen total de espacios vacíos.

$$S(\%) = \frac{V_w}{V_v} \times 100 = \frac{wG_s}{e}$$
 (Ecuación 3)

2.1.1.4 Contenido de humedad "w"

El contenido de humedad se conoce como la cantidad relativa de agua que se encuentra en un suelo respecto al peso de los sólidos o al volumen del suelo analizado (ver ecuación 4).

Se expresa en porcentaje (%), y es la relación entre el peso del agua del espécimen, y el peso de los sólidos.

$$w(\%) = \frac{m_w}{W_S} \times 100$$
 (Ecuación 4)

La relación entre las fases, la granulometría y los límites de Atterberg se utilizan para clasificar los suelos, permitiendo, además estimar su comportamiento.

2.1.2 Granulometría

Para estudiar los suelos, interesa conocer tanto los tamaños de las partículas como la distribución de los mismos. El análisis granulométrico divide esas partículas en grupos de tamaño y determina sus porciones relativas por peso. El análisis es realizado mediante un ensayo de laboratorio básico y es necesario para identificar los suelos en los sistemas ingenieriles de clasificación (Vargas, 2018).

Los suelos se clasifican de acuerdo al tamaño de las partículas en grano grueso y grano fino. Existen distintos métodos para trazar la curva granulométrica de un suelo (Crespo, 2004); si se trata de suelos gruesos, la técnica más empleada es tamizar la muestra con un arreglo de mallas colocadas de mayor a menor tamaño, mientras que para los suelos más finos que la malla No.200 se recurre a procedimientos como la sedimentación debido a la complejidad intrínseca de manejar tamaños de partículas tan pequeños. Los detalles de los procedimientos de ensayo están especificados en las normas ASTM C136 y D422 y AASHTO T27 y T88.

El uso de una gráfica estándar para representar los datos de tamaño de partículas permite a los ingenieros reconocer en forma instantánea las características de gradación de un suelo. La posición relativa de una curva sobre la gráfica indica si el suelo es fino (arcillas y limos plásticos) o grueso (gravas, arenas y limos no plásticos). La inclinación, la horizontalidad y la forma general de la curva son indicativas de la distribución de tamaños de partículas (Vargas, 2018). En la Figura 4 y la Figura 5 se muestran ejemplos de curvas granulométricas para arenas, gravas, limos y arcillas.

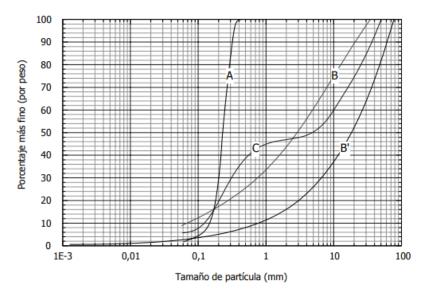


Figura 4. Ejemplos de curvas granulométricas para arenas y gravas Fuente: (Vargas, 2018)

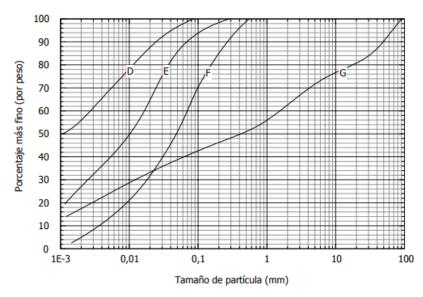


Figura 5. Ejemplos de curvas granulométricas para arcillas y limos Fuente: (Vargas, 2018)

El tamaño de las partículas de suelo afecta el comportamiento mecánico, especialmente en el caso de suelos de grano grueso. Para suelos gruesos el conocimiento de la curva granulométrica permite obtener información acerca de su compacidad, la cual se define como el grado de compactación en suelos granulares y tiene gran importancia en el diseño de carreteras y terraplenes (Sanz, 1975). En los suelos finos cohesivos las propiedades mecánicas no están influenciadas por la curva granulométrica, por lo que el valor de la información que de ella se extrae recae como un indicador de la clasificación del suelo (Rico y del Castillo, 2005).

2.1.3 Gravedad específica

"El peso específico es la relación del peso, al aire, de un determinado volumen de material, a una cierta temperatura, y el peso al aire, de un volumen de agua destilada, a la misma temperatura" (Cordero, 2018).

La gravedad específica de un material se determina dependiendo de la granulometría del mismo. Para materiales granulares o con partículas mayores a los 4,75 mm (No.4) se debe seguir el ensayo ASTM C127, que consisten en la saturación de un espécimen y mediante las mediciones de pesos y volúmenes se pueden obtener las densidades, gravedad específica y absorción del material. Los suelos con partículas pasando el tamiz No.4 el ensayo se realiza empleando un picnómetro con agua, procedimiento que debe seguir la norma ASTM D854 (Navarro, 2019).

En el Cuadro 1 se muestran los valores típicos de gravedad específica relacionados con el tipo de grano y en el Cuadro 2 según el tipo de suelo.

Cuadro 1. Valores típicos de gravedad específica según el tipo de grano

Tipo	Material	Gs
	Gravas	2,65
Grano grueso	Arena Gruesa a Media	2,65
	Arena Fina Limosa	2,65 – 2,67
	Arena Arcillosa	2,65
	Limo Arenoso	2,66 – 2,68
Grano fino	Limos	2,65 – 2,67
Grano inio	Limos Arcillosos	2,68
	Arcilla Arenosa	2,68 – 2,70
	Arcilla	2,75 – 2,80
Orgánicos	Limos Orgánicos	2,30
Orgánicos	Turba	1,50 - 2,15

Fuente: (Cordero, 2018)

Cuadro 2. Valores típicos de gravedad específica según el tipo de suelo

Tipo de suelo	Gs
Cenizas orgánicas	2,20 – 2,50
Suelos orgánicos	2,50 – 2,65
Arenas y gravas	2,65 – 2,67
Limos	2,67 – 2,72
Arcillas poco plásticas	2,72 – 2,78
Arcillas plásticas	2,78 – 2,84
Arcillas expansivas	2,84 – 2,88

Fuente: (Berry & Reid, 1993 citado por Cordero, 2018)

Los cuadros anteriores demuestran que mediante el conocimiento de esta propiedad, se puede tener una idea de la clasificación mineralógica del suelo, la cual a su vez no solo brinda información acerca de la génesis de este agregado, sino que también provee rasgos de su composición química.

2.1.4 Consistencia del suelo – Límites de Atterberg

Un suelo pasa por cuatro estados básicos de consistencia según el contenido de humedad que presente: sólido, semisólido, plástico y líquido. Cuando el suelo tiene un determinado contenido de humedad en el que no puede ser moldeable, se dice que está en estado líquido. Conforme se le va quitando agua, llega un momento en el que el suelo, sin dejar de estar húmedo, comienza a adquirir una consistencia que permite moldearlo y hacerlo manejable, entonces se dice que está en estado plástico. Si continúa perdiendo humedad el suelo irá perdiendo

trabajabilidad por lo que pasará a estado semisólido y luego a estado sólido, donde se comportará como un sólido quebradizo (Herrera, 2014).

El científico sueco Albert Mauritz Atterberg definió los cuatro estados de consistencia de un suelo mediante tres límites: el plástico (LP), el líquido (LL) y el de contracción (LC). Los límites de Atterberg se conocen como los contenidos de humedad en los cuales se da la transición de un estado a otro en un suelo. Según Chaves (2017), el límite líquido es el punto donde se da la transición entre estado líquido y plástico, el límite plástico es la transición entre plástico y semisólido y el límite de contracción cuando el suelo pasa a estado sólido (ver Figura 6).

El índice de plasticidad (IP) se obtiene de la diferencia entre el LL y el LP (Ecuación 5), los cuales se determinan mediante el ensayo establecido en la norma ASTM D4318 o AASHTO T89.

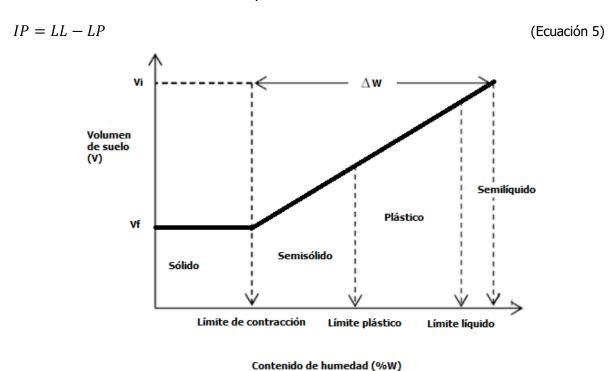


Figura 6. Límites de Atterbera

2.1.5 Grado de compactación y humedad óptima

La compactación se define, según Baltodano (2019), como la densificación del suelo mediante la adición de agua y la aplicación de energía mecánica para remover el aire del suelo. Es un método donde se densifica el suelo por medio de la reducción de la razón de vacíos mediante energía mecánica para mejorar el terreno para la construcción que se efectuará.

El grado de compactación de un suelo se mide en términos del peso seco a una humedad determinada. La relación entre el contenido de humedad de un suelo y su densidad se obtiene de un ensayo estandarizado conocido como proctor, ya sea estándar o modificado, los cuales presentan como principal diferencia la energía de compactación utilizada (ver Cuadro 3).

Cuadro 3. Parámetros del ensayo de compactación

			Diámetro	M	lazo		Golpes por capa	
Ensayo	Referencia	Método	del molde	Masa	Altura de caída	Capas		
Proctor	ASTM D-698	Α	100 mm (4 pulg)	2,5 kg	305 mm	3	25	
estándar	AASHTO T-99	B, C, D	150 mm (6 pulg)	(5,5 lbs)	(12 pulg)	3	56	
Proctor	ASTM D-1557	Α	100 mm (4 pulg)	4,5 kg	457 mm	5	25	
modificado	AASHTO T-180	B, C, D	150 mm (6 pulg)	(10 lbs)	(18 pulg)	3	56	

Fuente: (Vargas, 2018)

Partiendo desde un estado de humedad seco y conforme se aumenta el contenido de agua, se pueden obtener mayores densidades secas, aplicando una misma energía de compactación. Sin embargo, después de cierta cantidad de agua los valores de densidad seca empiezan a disminuir. El contenido de humedad al que se alcanza la máxima densidad seca se le conoce como contenido de humedad óptimo (ver Figura 7) (Chaves, 2017).

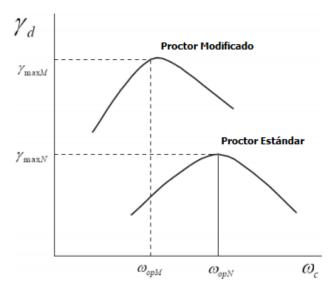


Figura 7. Curva de densidad contra contenido de humedad para proctor modificado y estándar

Adicionalmente, del ensayo proctor se puede calcular la curva de saturación teórica también conocida como curva de Cero Vacíos (ver Figura 8), la cual representa la relación entre la

densidad seca y los contenidos de humedad correspondientes cuando los poros del suelo están llenos de agua (Cordero, 2018).

Se calcula mediante la ecuación 6.

$$w_{sat} = \frac{\gamma_w G_s - \gamma_d}{G_s \gamma_d} \times 100$$
 (Ecuación 6)

Donde:

 w_{sat} : Contenido de humedad para la saturación completa

 γ_w : Densidad del agua (100 kg/cm³)

 γ_d : Densidad seca del suelo (100 kg/cm³)

G_s: Gravedad específica del suelo

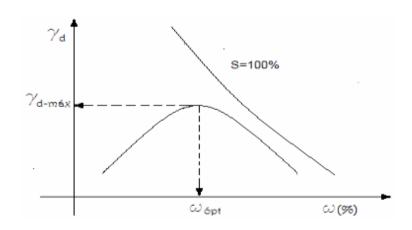


Figura 8. Curva de saturación teórica

El grado de compactación de un suelo, junto con la humedad, es de los factores que afectan directamente la respuesta mecánica de un suelo. Conforme el grado de compactación de un suelo aumenta, sus propiedades mecánicas se vuelven más favorables, mayor capacidad soportante y rigidez del material. Es una práctica común en la construcción de carreteras aplicar métodos de compactación en la subrasante buscando lograr el mayor grado de compactación posible (Rico & del Castillo, 1992 citado por Chaves, 2017).

2.1.6 Sistemas de clasificación de suelos

Los diferentes tipos de suelos son definidos por el tamaño de las partículas. Frecuentemente son encontrados en combinación de dos o más tipos de suelos diferentes como: arenas, gravas, limo, arcillas, limo arcilloso, entre otros. Son clasificados en grupos y subgrupos con similitudes

en sus propiedades físicas y mecánicas, con el fin de realizar una valoración inicial del tipo de

suelo de una forma rápida y económica (Navarro, 2019).

Se han originado varios sistemas de clasificación de suelos basándose generalmente en las

características granulométricas de los suelos y su plasticidad. Entre los sistemas de clasificación

más comunes se encuentra el sistema de clasificación AASHTO y el Sistema Unificado de Suelos

(SUCS).

2.1.6.1 Sistema de clasificación AASHTO

La Asociación Americana de Carreteras Estatales y Oficiales de Transporte adoptó este sistema

de clasificación de suelos en el que los suelos se agrupan en función de su comportamiento

como capa de soporte o asentamiento firme. Es el sistema más utilizado en la clasificación de

suelos en proyectos viales el cual se base en la granulometría y los límites de consistencia para

asignar el grupo al suelo.

El suelo se clasifica en siete grupos mayores A-1 al A-7 (ver Cuadro 4). Los suelos clasificados

en los grupos A-1, A-2 y A-3 son materiales granulares donde el 35% o menos de las partículas

pasan por el tamiz No.200. Los suelos cohesivos, de los que más del 35% pasan por el tamiz

No.200, son clasificados en los grupos A-4, A-5, A-6 y A-7. Existe adicionalmente el grupo A-8

para clasificar los suelos altamente orgánicos que son considerados inapropiados para ser

utilizados en una estructura de pavimento.

Para evaluar la calidad de un suelo como material para subrasante de carreteras, se incorpora

el número llamado índice de grupo (IG) junto con los grupos y subgrupos del suelo. Un suelo

con un IG = 0 se considera un material excelente para subrasante y con un IG \geq 20 un material

muy pobre. El índice de grupo está dado la ecuación 7.

IG = (F - 35)[0.2 + 0.005(LL - 40)] + 0.01(F - 15)(IP - 10) (Ecuación 7)

Donde,

F: Porcentaje pasando la malla No. 200

LL: Límite líquido

P: Índice de plasticidad

20

Cuadro 4. Sistema de clasificación AASHTO 1945

Clasificación general	Materiales granulares (35% o menos pasa por el tamiz N° 200)							Materiales limosos y arcillosos (más del 35% pasa el tamiz N° 200)			
Grupo	A-1-a	-1 A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7 A-7-5
Porcentaje que pasa:											A-7-6
N° 10 (2mm)	50 máx.	-	-			-				-	
N° 40 (0,425 mm)	30 máx.	50 máx.	51 mín.	-				-			
N° 200 (0,075 mm)	15 máx.	25 máx.	10 máx.	35 máx.				36 mín.			
Características de la fracción que pasa por el tamiz N° 40	max.	maxi	maxi								
Límite Líquido		-	-	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.
Índice de Plasticidad	6 m	náx.	NP	10 máx.	10 máx.	11 mín.	11 mín.	10 máx.	10 máx.	11 mín.	11 mín.
Constituyentes principales	roca, g	entos de grava y ena	Arena fina	Grava v arena arcillosa o limosa				Suelos limosos Suelos arcillosos			
Características como subrasante	10)	Excelente a bueno						Pobre a malo			

Fuente: (Vargas, 2018)

2.1.6.2 <u>Sistema Unificado de Clasificación de Suelos (SUCS)</u>

El Sistema Unificado de Clasificación de Suelos (Figura 9) se basa en el sistema de clasificación desarrollado por Casagrande durante la Segunda Guerra Mundial. Con algunas modificaciones fue aprobado por varias agencias de gobierno de los Estados Unidos en 1960. A diferencia del sistema AASHTO, este sistema fue concebido para clasificar suelos a ser usados en cualquier obra ingenieril (Chaves, 2017).

Los suelos se clasifican en términos generales en tres divisiones: suelos de grano grueso, suelos de grano fino y suelos altamente orgánicos. Los suelos de grano grueso son aquellos suelos que el 50% o más del material total en peso es retenido en la malla No.200. Los suelos de grano fino son aquellos suelos que el 50% o más del material total en peso pasa la malla No.200 (Quesada, 2016). Para la clasificación del suelo mediante el método SUCS se utiliza diversa nomenclatura. Para suelos granulares las siglas de los grupos son G (grava) y S (arena) y de los subgrupos son W (bien gradada) y P (mal gradada). Para suelos finos la nomenclatura de los grupos es M (limo), C (arcilla) y O (orgánico) y de los subgrupos es H (alta compresibilidad) y L (baja compresibilidad). Para los suelos altamente orgánicos se utiliza la sigla Pt (turba).

DIVISIONES PRINCIPALES		CRITERIO DE CLASIFICACIÓN EN EL LABORATORIO			DRATORIO	SÍMBOLO	SUELOS TÍPICOS		
	fracción la malla S. LIMPAS O o nada artículas		souy	s grano SC). obles; irupos.	S Cu>4 y 1 <cc<3< td=""><th>GW</th><td>Gravas bien gradadas, mezclas de grava y arena, con poco o nada de finos</td></cc<3<>		GW	Gravas bien gradadas, mezclas de grava y arena, con poco o nada de finos	
Mm)	AS de la ta en 4	GRAVAS LIMPIAS (Poco o nada de partículas finas)	ia (FS) y finos rica	W,SP). ,GC,SM, hbolos do os dos g	curvatur	Cu<4, Cc<	:1 o Cc>3	GP	Gravas mal gradadas, mezclas de grava y arena, con poco o nada de finos
GRUES aterial 200 (75 p	GRAVAS la mitad de es retenida e No. 4	RAVAS CON FINOS (Cantidad apreciable de partículas finas)	G), arena nulométric	asifique los suelos de gran sigue: as (GW,GP,SW,SP). Tinos (GM,GC,GC,SM,SC). el uso de símbolos dobles; criterios de los dos grupos	ad (C ₀) y D ₃₀ D ₁₀ D ₆₀	IP <ip<sub>A o IP<4 (Finos ML/MH)</ip<sub>	4 <ip<7 ll<30<br="" y="">(Finos CL-ML)</ip<7>	GM	Gravas limosas, mezclas de grava, arena y limo
SUELOS DE PARTÍCULAS GRUESAS Más de la mitad del material es retenida en la malla No. 200 (75 μm)	Más de gruesa	GRAVAS CON FINOS (Cantidad apreciable de partículas finas	de grava (FG), arena (f la curva granulométrica		Determine el coeficiente de uniformidad (C_0) y curvatura (C_0): $C_0 = \frac{D_{60}}{D_{10}} \qquad C_C = \frac{D_{30}^2}{D_{10}D_{60}}$	IP>IP _{,/} IP>7 y LL<30 (Finos CL/CH)	Use símbolos dobles (GC-GM)	GC	Gravas arcillosas, mezclas de grava, arena y arcilla
E PART	de la mitar de la mitar en la mal fracción No. 4 S LIMPIAS		₩ <u>₩</u>	cenido de finos (CF) d grueso como Gravas y arenas limpi Gravas y arenas con i Suelos que requieren se deben verificar los coeficiente de uniforr	nte de uni D ₆₀ D ₁₀	Cu>6 y	1 <cc<3< th=""><th>sw</th><th>Arenas bien gradadas, arenas con grava, con poco o nada de finos</th></cc<3<>	sw	Arenas bien gradadas, arenas con grava, con poco o nada de finos
Más d etenida	ARENAS ás de la mitad de la fracc gruesa pasa la malla No.	Po de		porcentajes a partir de ido de finos grues/ avas y aren avas y aren elos que rec	Deficient $C_{ij} = \frac{D_{ij}}{D_{ij}}$	Cu<6, Cc<	:1 o Cc>3	SP	Arenas mal gradadas, arenas con grava, con poco o nada de finos
lus a	SUELOS D Más es retenida es retenida ARENAS Más de la mitad de la gruesa pasa la malla	ARENAS CON FINOS (Cantidad apreciable de partículas finas)	Determine los p (CF)	el conter %: Gi !%: G	ine el o	IP <ipa ip<4<br="" o="">(Finos ML/MH)</ipa>	4 <ip<7 ll<30<br="" y="">(Finos CL-ML)</ip<7>	SM	Arenas limosas, mezclas de arena y limo
	Más de grues	ARENAS C (Can aprecia partícula	Detern	Según CF < 5' CF > 12 5s CF s	Determ	IP>IP _N IP>7 y LL<30 (Finos CL/CH)	Use símbolos dobles (SC-SM)	sc	Arenas arcillosas, mezclas de arena y arcilla
S	_ s	idad Ido 50)	lo y el	9 60 B W 70 1		ML	Limos inorgánicos, polvo de roca, limos arenosos o arcillosos ligeramente plásticos		
CULAS FINA del material 200 (75 μm)	LIMOS Y ARCILLAS Baja	compresibilidad (Límite líquido menor de 50)	del limite líquido y el del limite líquido y el del limite líquido y el del del del del del del del del del		CH WATTE	CL	Arcillas inorgánicas de baja a media plasticidad, arcillas con grava, arcillas arenosas, arcillas limosas, arcillas pobres		
s DE PARTÍCULAS FIN de la mitad del material la malla No. 200 (75 µm	_ ~	com (Lír				//		OL	Limos orgánicos y arcillas limosas orgánicas de baja plasticidad
ELOS DE PARTÍ Más de la mitad pasa la mala No.	_ «	op (o		de Plastición		CL CL	OH OH		Limos inorgánicos, limos micáceos o diatomáceos, limos elásticos
SUELOS DE PARTÍCULAS FINAS Más de la mitad del material pasa la malla No. 200 (75 μm)	LIMOS Y ARCILLAS Alta	c ompresibilidad (Límite líquido mayor de 50)	nine la u Índice de	oL MH			СН	Arcillas inorgánicas de alta plasticidad, arcillas francas	
	S I I I I I I I I I I I I I I I I I I I		Deterr	0 10 20 30 40 50 60 70 80 90 100 Limite Liquido, LL			80 90 100	ОН	Arcillas orgánicas de media a alta plasticidad, limos orgánicos de mediana plasticidad
SUELOS ALTAMENTE ORGÁNICOS			Veri	ifique la presencia d	le materia or	gánica en la coloración (o	oscura), el olor, etc.	Pt	Turba y otros suelos altamente orgánicos

Figura 9. Sistema de clasificación SUCS

Fuente: (Vargas, 2018)

2.2 Mecánica de suelos no saturados

La existencia de tres fases en los suelos parcialmente saturados, implica que el estudio de las propiedades y comportamiento del suelo como material estructural, se haga teniendo en cuenta otros conceptos y teorías adicionales a los tradicionalmente impartidos en la cátedra Mecánica de Suelos. En la década de los 70, se inicia el estudio del comportamiento de los suelos "parcialmente saturados", con las formulaciones de los conceptos y las teorías fundamentales (Meza, 2012).

Los grandes centros poblacionales a nivel mundial se encuentran concentrados en áreas urbanas en las que predominan suelos con nivel freático profundos donde los vacíos del suelo se encuentran ocupados con agua y aire (Ávila, 2017), es decir, se encuentran en estado no saturado. Cuando el suelo está parcialmente saturado, se involucran tres fases en el suelo que interactúan entre sí, partículas sólidas, agua y aire y de acuerdo con Fredlund y Morgenstern (1977, citados por Meza, 2012) se podría hablar de una cuarta fase: la interfase aire-agua.

La Figura 10 muestra el esquema planteado por Fredlund (2000, citado por Meza, 2012) para representar los estados del suelo dependiendo de las fases presentes.

Figura 10. Zonas de suelo saturado y parcialmente saturado Fuente: (Fredlund, 2000)

Los suelos que se encuentran por debajo del nivel freático se consideran en estado saturado, es decir, que los espacios vacíos están ocupados completamente por agua. Los suelos que se

encuentran por encima del nivel freático, pueden estar en estado seco o parcialmente saturado. La franja más cercana al nivel freático, la franja capilar, es donde la mayor parte de los vacíos se encuentran llenos de agua de manera continua, pero se pueden presentar burbujas de aire. La zona de suelo seco es la que se encuentra más cercana la superficie del terreno y la mayor parte de los vacíos se encuentran llenos de aire (Meza, 2012).

Los suelos no saturados se encuentran sometidos a un estado de tensión que, influenciado por el esfuerzo de succión, ocasiona que el volumen del suelo se modifique (Alfaro, 2008 citado por Ávila, 2017). La succión es aquella integrante del estado de esfuerzo que tiene en cuenta los efectos de superficie, capaces de retener agua dentro de la estructura del suelo. La succión en los suelos afecta los parámetros mecánicos, no obstante, la magnitud de estos depende de la humedad del medio. Esta variable resulta necesaria para entender las deformaciones que sufre un suelo parcialmente saturado (Barrera et al., 2002). Está compuesta por la succión matricial (ψ_m) y la succión osmótica (ψ_{osm}) y expresa en la ecuación 8.

$$\psi_t = \psi_m + \psi_{osm}$$
 (Ecuación 8)

Por otro lado, el estado de esfuerzos de los suelos no saturados se describe mediante los siguientes enfoques: Bishop 1959 propone el de "esfuerzo efectivo modificado", Fredlund 1977 el de "la variable de estado de esfuerzo independiente" y el de la "variable de estado modificado" (Lu & Likos, 2006 citado por Ávila, 2017).

2.3 Estructura de un pavimento

El pavimento es una estructura compuesta por capas que forman la superficie de una carretera, con espesores tales que puedan soportar las cargas vehiculares y transmitirlas, de manera adecuada, a la subrasante. Donde, además, debe brindar confort, estabilidad y seguridad al usuario. Los pavimentos se clasifican en dos tipos, rígidos o flexibles dependiendo de su comportamiento ante la aplicación de cargas y distribución de las mismas.

Los pavimentos flexibles presentan una combinación de capas (capa asfáltica, base y subbase) que se encargan de disipar las cargas de tránsito de forma que al llegar a la subrasante no superen su capacidad mecánica (Perera, 2015). Se caracterizan por su capacidad de deformación ante las cargas, esta capacidad es mayor en las capas superiores y disminuye con la profundidad. En la Figura 11 se muestran las partes de un pavimento flexible y la distribución de las cargas sobre el mismo.

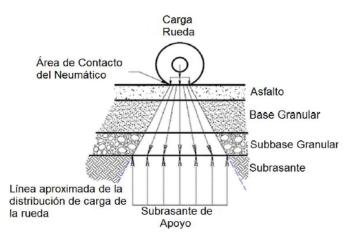


Figura 11. Partes y distribución de carga en un pavimento flexible

Fuente: (Mena, 2013)

Por otra parte, los pavimentos rígidos se componen de una losa de concreto que absorbe la mayor parte de la carga del tráfico. Por su alta rigidez distribuye las cargas sobre un área amplia de la subrasante, reduciendo las presiones. El mecanismo de distribución de cargas en un pavimento rígido se muestra en la Figura 12.

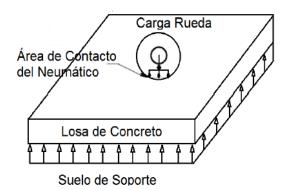


Figura 12. Partes y distribución de carga en un pavimento rígido

Fuente: (Mena, 2013)

La respuesta de un pavimento se refiere al análisis mecánico, el cual se basa en la reacción que produce ante las cargas vehiculares y entra en contacto con las influencias ambientales. El desempeño es una consecuencia de la respuesta y es la medida de las fallas desarrolladas durante su vida útil. A diferencia de la respuesta, el desempeño es mucho más difícil de cuantificar analíticamente debido a la variabilidad y la incertidumbre de los parámetros involucrados (Mena, 2013 citado por Ávila, 2017).

Los pavimentos más comunes en Costa Rica son los pavimentos asfálticos. La carpeta asfáltica es la que se expone directamente a la intemperie, absorbe los esfuerzos horizontales y parte

de los esfuerzos verticales producidos por las cargas vehiculares. La función de la base es absorber la mayor parte de los esfuerzos verticales. La sub-base es la capa ubicada entre la base y la subrasante (Zárate, 2003 citado por Perera, 2015). La subrasante funciona como cimentación de la estructura de pavimento, por lo que las propiedades de la misma pueden tener gran influencia en el desempeño y durabilidad (Chaves, 2017).

2.3.1 Efecto de la subrasante

El diseño de las capas estructurales del pavimento está directamente atado al suelo sobre el que se va a realizar la obra, una subrasante de baja calidad va a requerir mayores espesores de capas con el fin de minimizar los esfuerzos que lleguen. El suelo puede influenciar notablemente el comportamiento de un pavimento ante diversas acciones, por lo que es importante conocer las características de este material y cómo estas pueden afectar sus propiedades mecánicas. Se deben tomar en cuenta aspectos como la facilidad de compactación, capacidad de drenaje y resistencia a esfuerzos aplicados, para lograr evitar fallas durante su vida útil (Herrera, 2007 citada por Navarro, 2019).

Un mal conocimiento de las propiedades del suelo de subrasante puede resultar en un diseño inadecuado permitiendo deformaciones excesivas o, por otro lado, en un sobrediseño teniendo un impacto directo en el costo del proyecto (Chaves, 2017). La fatiga y la deformación permanente son algunas de las fallas comúnmente asociadas a la deformabilidad de la subrasante.

Herrera (2007 citada por Navarro, 2019) establece que, a pesar de que el tramo de cimentación esté conformado por un mismo tipo de suelo, se debe ser consciente de su heterogeneidad, y de las variaciones del nivel freático que pueden influir en su comportamiento. Por ello la necesidad de llevar a cabo suficientes pruebas de laboratorio, para evaluar el comportamiento de lo suelo y emitir un criterio acorde con el comportamiento real de la subrasante.

Para el dimensionamiento o diseño del pavimento, los ingenieros además de los ensayos de caracterización de suelos, caracterizan la subrasante a través de la relación de soporte de California (CBR), de la deflectometría o del módulo resiliente (Mr) (Navarro, 2019).

2.4 Módulo resiliente (Mr)

La subrasante está sometida a un estado de esfuerzos variables y por ende, a un estado de deformaciones en el momento que los vehículos aplican las cargas sobre la estructura del pavimento (Figura 13). Este tipo de cargas son dinámicas de corta duración, que llevan a la fatiga a la estructura del pavimento en un período de tiempo, el cual también depende de las propiedades geomecánicas y dinámicas de los materiales, además del proceso constructivo (Vidal y Osorio, 2002).

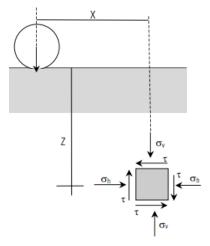


Figura 13. Esquema de esfuerzos en la subrasante Fuente: (Vidal y Osorio, 2002)

La mayoría de los materiales de un pavimento presentan comportamientos esfuerzodeformación de tipo resiliente y plástico. La reacción de un material cuando la carga es retirada, es recuperar parte de la deformación inducida; la capacidad de recuperación de dicho material es lo que comúnmente se denomina la resiliencia de los materiales. Por lo que se conoce como deformación resiliente o elástica a las deformaciones que tienen una recuperación instantánea una vez que se remueve la carga que las generó. Por otra parte, se denomina deformación plástica o permanente a la deformación que se mantiene en el material aún removida la carga (Navarro, 2019).

Bajo cierto número de ciclos de carga y descarga el comportamiento presentado se dice que es "elástico" ya que las deformaciones tienden a recuperarse en su la totalidad y las deformaciones permanentes son muy bajas en comparación con las resilientes (Rojas, 2014). En el momento en el que la toda la deformación presentada en el suelo es recuperable, se

puede determinar el módulo resiliente del material. Por tanto, el Mr está estrechamente ligado a un proceso de carga y descarga (Figura 14).

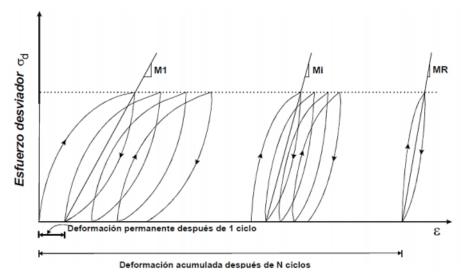


Figura 14. Deformación acumulada con el número de aplicaciones del esfuerzo desviador Fuente: (Gárnica, Pérez y Gómez, 2000)

El módulo resiliente es un parámetro fundamental para el diseño de pavimentos, se describe como una propiedad elástica del material que se utiliza para caracterizar la respuesta mecánica de los materiales constituyentes de la estructura de un pavimento (Ávila, 2017). Este módulo se refiere a la capacidad de un material de recuperar su forma original después de haber sido deformado, por lo que no es indicador de la resistencia de un material sino una medida de la rigidez del material y un indicador de su calidad o condición (Perera, 2015).

Se define como la relación de la magnitud del esfuerzo desviador repetido en compresión triaxial y la deformación axial recuperable (Figura 14) y se expresa en la ecuación 9.

$$M_r = \frac{\sigma_1 - \sigma_3}{\varepsilon_{axial}} = \frac{\sigma_d}{\varepsilon_{axial}}$$
 (Ecuación 9)

Donde,

 σ_1 : Esfuerzo principal mayor (sobrecarga)

 σ_3 : Esfuerzo principal menor (confinamiento)

 σ_d : Esfuerzo desviador

 ϵ_{axial} : Deformación recuperable

En los suelos no saturados el módulo resiliente puede ser descrito como una función de tres variables de esfuerzos (ver ecuación 10).

$$M_r = f[(\sigma_3 - u_a), (u_a - u_w), (\sigma_1 - \sigma_3)]$$
 (Ecuación 10)

Donde,

 u_a : Presión de poro de aire

 u_w : Presión de poro de agua

 σ_3 – u_a : Esfuerzo de confinamiento neto

 $u_a - u_w$: Succión matricial (ψ_m)

 $\sigma_1 - \sigma_3$: Esfuerzo desviador (σ_d)

Los suelos tanto de fundación como los que conforman la estructura del pavimento presentan comportamiento elastoplástico. Sin embargo, según Chaves (2017), las deformaciones observadas en un pavimento debido a carga vehicular son predominantemente resiliente. Esto lleva a que los modelos de análisis de pavimentos, generalmente consideren el comportamiento de las capas como elásticas en lugar de elastoplásticas.

2.4.1 Factores que afectan el Mr

El módulo resiliente no es una propiedad constante. La respuesta mecánica de un pavimento puede variar drásticamente dependiendo de las condiciones en que se encuentre y en la forma en que está siendo cargado (Chaves, 2017).

El comportamiento de un suelo ante los esfuerzos aplicados, no solo depende de los factores inherentes al suelo, sino de factores externos tales como el contenido de humedad, número de repeticiones de carga, estado de esfuerzos, tixotropía del suelo, densidad seca, energía de compactación, entre otros. A continuación, se detallan algunos de los factores reportados en la literatura.

Contenido de humedad

El desempeño de una estructura de pavimento se ve afectado, principalmente, por factores ambientales. Los factores que presentan una afectación directa sobre el grado de saturación de las subrasantes son la precipitación, la humedad relativa y la profundidad del nivel freático. Estos afectan la susceptibilidad de la subrasante a deformarse producto de las cargas a la que

se encuentra sometida, efecto que se traduce en un posible deterioro de la estructura de pavimento que soporta.

El agua ingresa a la estructura del pavimento y a la subrasante mediante grietas en la capa asfáltica y los espadones, zanjas laterales o cunetas en mal estado, por fluctuaciones del nivel freático y por ascensión capilar, entre otras razones. Estos aspectos contribuyen a la degradación de la capacidad soportante de la estructura (Perera, 2015).

El agua que ingresa a la estructura altera las propiedades de los materiales, como el módulo resiliente, la resistencia al esfuerzo cortante, la cohesión, entre otros.

Para cuantificar los daños por humedad es necesario conocer el contenido de humedad en las capas del pavimento, que no necesariamente tienen una correlación directa con la precipitación.

Las fluctuaciones del nivel freático tienen una influencia directa en el módulo resiliente de los materiales no ligados al pavimento. Cuando el nivel freático se encuentra cerca de la superficie (30 a 91 cm de profundidad), la influencia de las condiciones ambientales sobre el grado de saturación es nula. Por el contrario, cuando la profundidad del nivel freático es de 1,5 a 4,5 m de la superficie, el efecto que presentan las condiciones del medio sobre la succión del suelo comienza a ser importante para definir el módulo resiliente en los suelos no saturados (Zapata y Salim, 2012 citado por Perera, 2015).

El módulo de resiliencia de los suelos de subrasante se reduce con el incremento en contenido de agua o grado de saturación. Al aplicar ciclos de carga en materiales de baja permeabilidad se genera presión de poro que disminuye los esfuerzos efectivos del suelo, por lo que la deformación permanente aumenta, haciendo así que, a mayor contenido de agua, el módulo resiliente disminuya (Khoury y Zaman, 2004 citado por Rojas, 2014).

Lee et al. (1977, citado por Chaves, 2017) recalcan que, en los suelos cohesivos, al pasar el punto de humedad óptima el valor de módulo resiliente disminuye rápidamente con incrementos en el contenido de humedad, pero que la gradiente disminuye conforme se acerca al estado de saturación. Andrei et al. (2009 citado por Rojas, 2014) encontraron en su investigación que a variaciones de humedad entre el 3-5% se produce una reducción del módulo entre el 50-70%.

La reacción ante una alteración del contenido de humedad depende de la naturaleza del material. En general, se puede afirmar que (Austroads Ltd, 2012) para suelos arenosos, pequeñas fluctuaciones en el contenido de humedad producen pocos cambios en el volumen y módulo resiliente. Para suelos limosos, pequeñas fluctuaciones en el contenido de humedad producen pocos cambios en el volumen, pero pueden producir grandes cambios en el módulo. Y para los suelos arcillosos o suelos granulares con grandes contenidos de finos, pequeñas fluctuaciones en la humedad pueden producir grandes variaciones en el volumen y disminuciones en el módulo del material.

Método de compactación

El método de compactación puede influir en el arreglo que adoptan las partículas dentro del suelo. Los cambios a la estructura de las partículas se les atribuyen al cortante inducido sobre la masa de suelo por el método de compactación utilizado (Chaves, 2017). Seed et al. (1962 citado por Pérez et al., 2016) reportó que la compactación estática da como resultado módulos de resiliencia mayores a los obtenidos cuando se compacta por medio de amasado. Este efecto es más importante del lado húmedo de la curva de compactación.

Chaves (2017) destaca que, bajo un mismo contenido de agua, al aumentar el grado de compactación el módulo resiliente aumenta. Para humedades inferiores al contenido de humedad óptimo, el valor de módulo es más sensible al grado de compactación.

Número de repeticiones de carga

Conforme aumenta el número de repeticiones de carga y descarga, aumenta la deformación permanente acumulada. La acumulación de las deformaciones permanentes también produce una densificación del material, causando que aumente su rigidez (Chaves, 2017).

Conforme la deformación permanente producida por cada ciclo de carga vaya disminuyendo, la deformación resiliente también irá cambiando por lo que el módulo variará hasta llegar a un valor constante. A medida que el número de aplicaciones del esfuerzo desviador se incrementa, el módulo de resiliencia tiende a incrementarse también (Gárnica, Gómez y Pérez, 2000).

Estado de esfuerzos

El estado de esfuerzos de un suelo en una estructura generalmente se describe en función de la presión de confinamiento y el esfuerzo desviador. Estudios han demostrado que tanto para suelo granulares como para suelos cohesivos, aumentar el esfuerzo de confinamiento resulta en un aumento del módulo resiliente (Chaves, 2017).

El esfuerzo de confinamiento es una variable de gran influencia sobre el módulo de materiales finos. Sin embargo, el efecto producido por el esfuerzo desviador es de mayor consideración.

Gárnica, Gómez y Pérez (2000) realizaron un estudio donde se observa que, a medida que el esfuerzo desviador se incrementa, el módulo de resiliencia tiende a disminuir, pero este decremento ya no se aprecia tanto para niveles de esfuerzo desviador mayores a 40kPa. A este efecto se le conoce como *stress-softening*.

Tixotropía del suelo

Estudios de Gárnica, Gómez y Pérez (2000) han encontrado que las arcillas compactadas, sobre todo a altos grados de saturación, presentan un aumento en las propiedades de resistencia si el suelo es dejado en reposo entre cargas. Este incremento en resistencia es atribuido a la tixotropía y al cambio progresivo en los arreglos de las partículas y presiones de poro del agua dentro del suelo en un tiempo prolongado. Por tixotropía se entiende la recuperación progresiva de propiedades del suelo después de la compactación.

Seed et al. (1962, citado por Gárnica et al., 2000) reportó que el efecto de tixotropía en el módulo de resiliencia varía con el número de repeticiones. A menos de 10,000 repeticiones, un incremento en el tiempo de almacenamiento previo a la prueba causa un aumento en el módulo de resiliencia; pero para mayor número de repeticiones los valores ya no son afectados significativamente por el periodo de almacenamiento.

2.4.2 Determinación del Mr

Para obtener el módulo resiliente existen tres formas: los ensayos de laboratorio, correlaciones empíricas y las mediciones directas en campo.

En el laboratorio se realiza mediante ensayos triaxiales dinámicos. Las metodologías de ensayo aceptadas son las desarrolladas por la AASHTO T307 y la NCHRP 1-28a. El ensayo consiste en medir las deformaciones generadas sobre una probeta cilíndrica del suelo estudiado, sometida a distintas combinaciones de presión de confinamiento y esfuerzo desviador, representativas de los esfuerzos que puede experimentar una subrasante de un pavimento en servicio.

Los ensayos de campo son comúnmente utilizados para medir características de resistencias de los suelos en sitio. Estos ensayos se pueden aplicar para obtener valores de módulo resiliente a ser utilizados metodologías de análisis y diseño de pavimentos. Generalmente se utilizan dos tipos de ensayos: ensayos de penetración (Penetrómetro Dinámico de Cono y Penetrómetro con Anillo de Carga) y ensayos de deflectometría (Deflectómetro de Impacto Liviano). Los ensayos de deflectometría, se basan en medir las deformaciones generadas sobre una superficie al ser impactada, con el fin de determinar la rigidez. Los ensayos de penetración, se basan en medir la resistencia a la penetración de un suelo y a partir de esta medida obtener parámetros de resistencia y rigidez (Chaves, 2017). También se pueden mencionar métodos como el analizador portable de propiedades sísmicas, el método ultrasónico, entre otros.

Existen correlaciones empíricas que buscan relacionar el módulo resiliente con las propiedades de los materiales. Algunas de las relaciones más utilizadas se muestran en el Cuadro 5. El valor de Mr obtenido por estas correlaciones, corresponde al suelo en estado de humedad óptima, por lo que debe ser ajustado si se requiere un valor para otro estado de humedad.

Cuadro 5. Relaciones empíricas para obtener el Módulo Resiliente

Autor	Relación	Propiedad
Heukelom & Foster (1960)	Mr(psi) = 1500 * CBR	CBR
Green & Hall (1975)	$Mr(psi) = 5409 * CBR^{0,71}$	CBR
Powell (1984)	$Mr(MPa) = 17,6 * CBR^{0,64}$	CBR
Lister (1987)	$Mr(psi) = 2555 * CBR^{0,64}$	CBR
AASHTO MEPDG	$Mr(psi) = 30000 * \frac{a_i}{0.14}$	a _i , coeficiente de capa AASHTO

Fuente: (Navarro, 2019)

El módulo resiliente también se puede obtener mediante modelos mecanísticos. Los modelos mecanísticos son aquellas representaciones para el análisis del comportamiento de los pavimentos, que incluyen las propiedades mecánicas fundamentales de los materiales. Ávila (2017) elabora un resumen de los modelos mecanísticos más utilizados, los cuales solamente consideran el estado de esfuerzos a los que es sometido el espécimen.

Cuadro 6. Modelos mecanísticos para Mr basados en estados de esfuerzos

Nombre	Descripción	Modelo
Modelo presión de confinamiento	Este modelo fue desarrollado por Dunlap en 1963 su ecuación fue desarrollada en arenas y gravas en estado seco y saturado bajo carga triaxial dinámica.	$M_r = k_1 \left(\frac{\sigma_3}{Pa}\right)^{k_2}$
Modelo K-θ	Este modelo fue desarrollado por Seed y otros autores en 1967. El módulo resiliente está expresado como una función de los esfuerzos principales (θ) a los cuales el espécimen está sometido. El <i>primer invariante de esfuerzos</i> θ es igual a la suma de los esfuerzos principales (σ 1 + σ 2 + σ 3) que actúan en el espécimen. La relación entre Mr y θ es una recta en un gráfico log-log. La desventaja de este modelo es que no toma en cuenta los efectos del esfuerzo cortante.	$M_r = k_1 \left(\frac{\theta}{Pa}\right)^{k_2}$
Modelo K-od	Este modelo fue desarrollado por Moossazadeh y Witczak en 1981. Es un modelo para los suelos cohesivos. Se introduce el esfuerzo desviador $\sigma d = \sigma 1 - \sigma 3$.	$M_r = k_1 \left(\frac{\sigma_d}{Pa}\right)^{k_2}$
Modelo May- Witczak	Desarrollado por May y Witczak en 1981. Considera al primer invariante de esfuerzos θ y el esfuerzo desviador σ d. El esfuerzo desviador está relacionado directamente con el máximo esfuerzo cortante τ_m (σ_d /2) aplicado al espécimen. Como toma en cuenta el esfuerzo cortante es aplicable a suelos cohesivos.	$M_r = k_3 \left(\frac{\theta}{Pa}\right)^{k_4} \left(\frac{\sigma_d}{Pa}\right)^{k_5}$
Modelo esfuerzo cortante octaédrico (Modelo Universal)	Desarrollado por Witczak y Uzan en 1988. Considera un cambio en el esfuerzo desviador por el esfuerzo cortante octaédrico que es un parámetro fundamental. Los esfuerzos fueron normalizados utilizando la presión atmosférica. Tiene la misma precisión que el modelo anterior pues el esfuerzo desviador y el esfuerzo octaédrico son proporcionales.	$M_{r} = k_{1} P a \left(\frac{\theta}{P a}\right)^{k_{2}} \left(\frac{\tau_{oct}}{P a}\right)^{k_{3}}$ τ_{oct} $= \frac{1}{3} \sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}}$
Modelo de la Guía de Diseño 2002	Aplicable para todos los tipos de materiales no ligados para pavimentos, desde las arcillas más plásticas hasta las bases granulares más limpias.	$M_r = k_1 P a \left(\frac{\theta}{P a}\right)^{k_2} \left(\frac{\tau_{oct}}{P a} + 1\right)^{k_3}$
Modelo del Programa de Desempeño a largo plazo de pavimentos (LTPP)	Es una versión modificada del modelo universal constitutivo.	$\begin{split} log\left(\frac{M_r}{Pa}\right) &= k_1 + k_2 log\left(\frac{\theta}{Pa}\right) \\ &+ k_3 log\left(\frac{\tau_{oct}}{Pa}\right) \\ &+ k_4 \left(log\left(\frac{\tau_{oct}}{Pa}\right)\right)^2 \end{split}$

Nota: Para todos los casos k_1 , k_2 , k_3 , k_4 y k_5 son constantes producto de la regresión lineal, θ es el primer invariante de esfuerzos, σ_1 , σ_2 y σ_3 son los esfuerzos principales, P_a es la presión atmosférica y τ_{oct} es el cortante octaédrico.

Fuente: (Ávila, 2017)

Adicionalmente, varios modelos han sido propuestos para incorporar los efectos que las variaciones en el contenido de humedad tienen sobre la respuesta resiliente de los suelos. A continuación, se muestran modelos de predicción del Mr para condiciones no saturadas desarrollados por distintos autores utilizando métodos empíricos, el concepto de esfuerzo efectivo, teoría de micromécanica y leyes termodinámicas (Vanapalli y Han, 2013 citado por Ávila, 2017).

Cuadro 7. Modelos mecanísticos que incorporan mecánica de suelos no saturados

	Nombre	Modelo		
	Johnson et al. (1968)	$M_r = 1.35x10^6(101.36 - \psi)^{2,36}(\theta_1)^{3,25}(\gamma_d)^{3,06}$		
	Ceratti et al. (2004)	$M_r = 142 + 16.9\psi_m$		
Relaciones empíricas	Parreira & Goncalves (2000)	$M_r = 14,10\sigma_d^{0,782}\psi^{0,076}$		
	MEPDG (2004)	$\log\left(\frac{M_r}{M_{ropt}}\right) = a + \frac{b - a}{1 + exp\left[ln\left(-\frac{b}{a}\right) + k_m(S - S_{opt})\right]}$		
	Fredlund et al. (1977)	$\log M_r = C_{1d} - m_{1d}(\sigma_{\rm d})$		
	Yang et al. (2005)	$M_r = k_1 (\sigma_{\rm d} + \chi \psi_m)^{k_2}$		
Modelos constitutivos	Cary & Zapata (2008)	$\frac{M_r}{Pa} = k_1 \left(\frac{\theta_{neto} - 3\Delta u_{w-sat}}{Pa}\right)^{k_2} \left(1 + \frac{\tau_{oct}}{Pa}\right)^{k_3} \left(\frac{\psi_{m0} - \Delta \psi_m}{Pa} + 1\right)^{k_4}$		
	Khoury et al. (2011)	$M_r = \left[k_1 Pa \left(\frac{\theta_b}{Pa} \right)^{k_2} \left(1 + \frac{\tau_{oct}}{Pa} \right)^{k_3} + (\psi - \psi_0) \left(\frac{\theta_d}{\theta_s} \right)^{\frac{1}{n}} \right] \left(\frac{\theta_d}{\theta_w} \right)$		
	Oh et al. (2012)	$M_r = k_1 Pa \left(\frac{\sigma_b + 3k_4 \psi \theta}{Pa} \right)^{k_2} \left(\frac{\tau_{oct}}{Pa} + 1 \right)^{k_3}$		

Nota: Para todos los casos ψ es la succión total, θ_1 es el primer invariante de esfuerzos, γ_d es la densidad seca, u_a es la presión de poro de aire, u_w es la presión de poro de agua, ψ_m es la succión matricial, (S-S_{Opt}) es la variación en el grado de saturación, a es el mínimo del log(Mr/Mr_{Opt}), θ_s contenido volumétrico de agua en succión cero, ψ_0 valor de la succión del suelo al momento de ejecutar la prueba, θ_d contenido volumétrico de agua a través de la curva de secado, k_1 , k_2 , k_3 , k_4 , k_5 y m son parámetros de regresión. Para suelos finos a es -0,5934, b es 6,1324 y para suelos gruesos a es -0,3123, b es 0,3 y km es 6,8157.

Fuente: (Vanapalli y Han, 2013 citado por Ávila, 2017)

Modificado por: (Alfaro, 2020)

Se deben destacar los modelos propuestos por Ávila (2017). Se desarrollaron tomando de base el modelo propuesto por Cary (2008) el cual propone una modificación al Modelo Universal (MUM), al incorporar la succión como otra variable de estado dentro del modelo. Estos modelos

aplican únicamente para materiales de grano fino con características similares a las del suelo estudiado (arena limosa).

En el Cuadro 8 se muestran los modelos obtenidos por Ávila (2017) y los valores de los parámetros de regresión correspondientes.

Cuadro 8. Resumen de las regresiones lineales generalizadas para cada modelo

Nombre	Modelo	P	arámetros
		K_1	1328,125
Universal Modificado	$(\theta_{neto}-3\times\Delta u_{w-sat})^{k_2}$ $(\tau_{oct}, 1)^{k_3}$ $((\psi_{m0}-\psi_m), 1)^{k_4}$	K_2	0,291
(Calibrado)	$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4}$	K ₃	-1,608
(canbrado)		K_4	1,101
	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a})}$	K_1	1019,873
Evnononcial		K_2	0,203
Exponencial		K ₃	-0,870
		K_4	0,448
		K_1	146416,838
		K_2	566,125
Polinómico	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct}^2 + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto}$	K ₃	0,002
FUIIIOITIICO		K 4	-32,128
		K 5	0,164
		K_6	232,643

Fuente: (Ávila, 2017)

Modificado por: (Alfaro, 2020)

2.5 Curva Característica Suelo-Agua

La Curva Característica Suelo-Agua (SWCC por sus siglas en inglés), se define como la relación entre el grado de saturación y la succión del suelo. Permite conocer la cantidad de agua retenida a diferentes esfuerzos, la capacidad total de retener agua y la disponibilidad de agua en el suelo. La posición relativa, inclinación y forma de la curva se determinan según la geometría de los poros, la magnitud y composición mineralógica de la facción final (Perera,2015).

Los estudios realizados por Chon kan (2017) en los suelos utilizados como subrasantes en carreteras se concentran en el concepto de Curva Característica Suelo-Agua. Esta depende del tipo de suelo (Figura 15) y resulta ser vital para calcular el flujo de la humedad en los suelos no saturados y así predecir el contenido de humedad de los componentes de la estructura del pavimento.

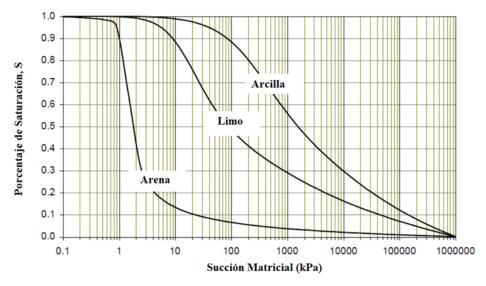


Figura 15. Curva característica de un suelo

Fuente: (Mena, 2013) Modificado por: (Alfaro, 2020)

La succión es la diferencia entre la presión del aire y la presión del agua de los poros del suelo. Está directamente relacionada con la mayor o menor tendencia del suelo a absorber agua. La succión en un punto del suelo depende de las condiciones ambientales, la proximidad al nivel freático y el tipo de suelo. Por encima del nivel freático y de la zona capilar, las presiones de poro son negativas, generándose succión (Alfaro, 2008 citado por Ávila, 2020).

Perera (2015) establece que, sin el efecto de la succión resulta imposible definir el estado de esfuerzo y entender la respuesta a deformación de un suelo parcialmente saturado. Además, hace mención a numerosos estudios que se han dedicado a determinar el papel de la succión. Jiménez (1958) demostró que los suelos arcillosos compresibles experimentan cambios en su índice de vacíos como consecuencia de los cambios en la succión. Yong et al. (1971), señalaron que un aumento en la succión puede producir deformaciones permanentes en suelos arcillosos.

Asimismo, se ha demostrado que, para suelos colapsables y arcillas expansivas, un aumento de la succión contribuye a un incremento de la rigidez y del grado de sobreconsolidación del suelo, ya que actúa en las uniones entre partículas, incrementando las fuerzas que las mantienen unidas (Perera, 2015).

2.5.1 Relación entre el Mr y la SWCC

Vanapalli y Han (2013) citan varios investigadores que utilizaron satisfactoriamente la SWCC como herramienta para predecir las propiedades no lineales de los suelos no saturados con respecto a la succión, coeficiente de permeabilidad, esfuerzo cortante, elasticidad, capacidad de soporte, entre otros.

Es de amplio conocimiento que cualquier incremento en el contenido de humedad del suelo provoca la reducción del Mr y viceversa. El contenido de humedad del suelo está íntimamente relacionado con la succión matricial, y dicha relación es caracterizada mediante la curva de retención de agua (Cary y Zapata, 2011).

De su investigación Vanapalli y Han (2013, citado por Ávila, 2017) recomiendan utilizar la SWCC como herramienta para la predicción del Mr tomando la influencia de la succión del suelo para suelos de grano fino. Además, establecen que la determinación de las propiedades del suelo utilizando este enfoque es comparativamente más fácil que las pruebas de succión controlada para suelos no saturados, las cuales consumen mucho tiempo y requieren equipo elaborado para poder realizar los ensayos.

Ávila (2017) demostró en su estudio, que tal y como lo indican Vanapalli y Han (2013), existe una fuerte relación entre la forma de la Curva Característica y la variación del Mr con respecto a la succión del suelo (Figura 16). Para ello, utilizó el modelo de Fredlund y Xing para calcular la SWCC (ecuaciones 11 y 12) y el MUM calibrado para predecir el módulo resiliente.

$$\theta_{w} = C(h) \left[\frac{\theta_{s}}{\left[ln \left[\exp(1) + \left(\frac{h}{a} \right)^{b} \right] \right]^{c}} \right]$$
 (Ecuación 11)

$$C(h) = \left[1 - \frac{\ln{(1 + \frac{h}{h_r})}}{\ln{(1 + \frac{10^6}{h_r})}}\right]$$
 (Ecuación 12)

Donde,

 θ_{w} : contenido volumétrico de agua

a: parámetro del suelo función del valor de entrada de aire del suelo en kPa

b: parámetro del suelo función de la tasa de extracción de agua del suelo, una vez que el valor de entrada de aire ha sido excedido

c: parámetro función del contenido residual de agua

h: Succión matricial kPa

 h_r : parámetro función de la de la succión a la cual se establece el contenido residual de agua en kPa.

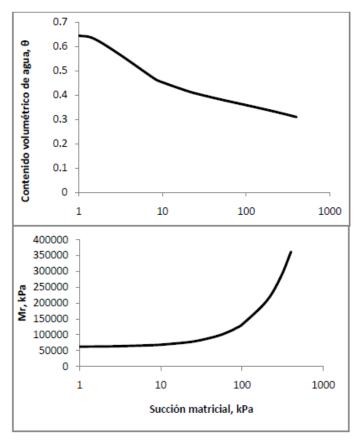


Figura 16. SWCC vs Mr, respecto a la succión del suelo Fuente: (Ávila, 2017)

3 MUESTRAS DE SUBRASANTE

3.1 Selección de puntos de muestreo

El país cuenta con gran variedad de suelos debido a sus diferentes condiciones climáticas y topográficas. Para la selección de los puntos de muestreo, se consideran criterios tales como la funcionalidad del suelo como material de subrasante, que se encuentre sometido a distintos contenidos de humedad y que sea un suelo de gran incidencia en el país, el cual se encuentre con mayor frecuencia en proyectos carreteros.

Adicionalmente, para cumplir con los objetivos del presente trabajo de investigación, los puntos seleccionados deben seguir las recomendaciones establecidas por Ávila (2017) en su trabajo "*Efecto del contenido de agua en el módulo resiliente de las subrasantes*" y, además, pertenecer a la investigación realizada por Chon kan (2017). Ambos investigadores basaron la escogencia de los puntos de muestreo según la información obtenida de la investigación titulada "*Caracterización físico-química de los suelos de Costa Rica*" realizada por Ávila & Araya (2014).

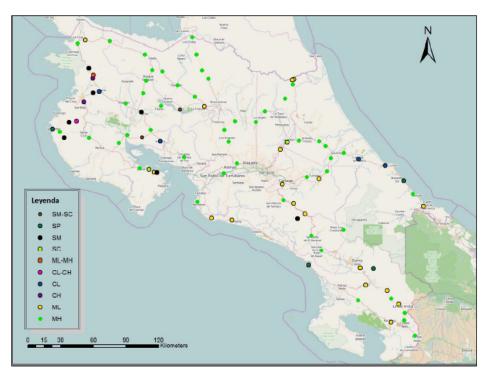


Figura 17. Distribución espacial de los tipos de suelo clasificados según SUCS Fuente: (Ávila & Araya, 2014)

En dicho informe se trabajó con un total de 92 puntos los cuales fueron seleccionados en diferentes puntos de la Red Vial Nacional y Cantonal, en la que hay o se prevén trabajos carreteros. Cada punto fue sometido a un análisis de sus características fisicoquímicas y fue clasificado según El Sistema Unificado de Clasificación de Suelos "SUCS", tal y como se muestra en la Figura 17.

Según Ávila & Araya (2014) el 55% de los suelos muestreados corresponden a limos de alta plasticidad (tipo MH según la clasificación SUCS), el 21% a limos de baja plasticidad, el 8% con arenas limosas y el porcentaje restante corresponde a otros tipos de suelos (ver Figura 18a). Por tanto, según su granulometría de la totalidad de los suelos analizados un 76% corresponde a limos, un 16% a arenas y el 8% restante a arcillas (ver Figura 18b).

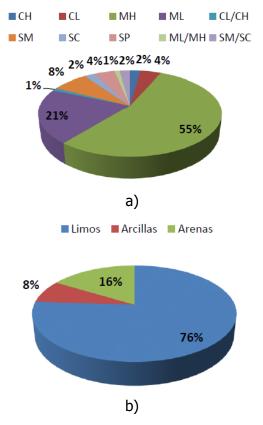


Figura 18. Distribución por tipo de suelo según a) clasificación SUCS, b) granulometría Fuente: (Ávila & Araya, 2014)

Según Chaves (2017), las condiciones climáticas del país, altas temperaturas y precipitaciones, han propiciado un potencial alto de meteorización, por lo que es muy común encontrar suelos finos en gran parte del país. De acuerdo al Código de Cimentaciones de Costa Rica (2009,

citado por Chaves, 2017), los tipos de roca, el clima y las condiciones de drenaje, han llevado a una gran presencia en el país de los limos con arcilla de alta compresibilidad (tipo MH). Además de esto, la actividad volcánica del país ha dado origen a suelos arcillosos de alta expansividad, limos colapsables y limos o arcillas blandas; suelos que pueden presentar dificultades al ser utilizados como fundación de una carretera o cualquier obra civil.

En su trabajo de investigación Ávila (2017) recomienda realizar ensayos en suelos de tipo MH y ML (limos de alta y baja plasticidad), de acuerdo con su clasificación SUCS. Esto debido a que estos representan aproximadamente el 80% de los suelos del país. Es de esperar, por lo tanto, que los suelos que tengan mayor incidencia como subrasantes en los proyectos de carreteras correspondan a limos.

Por otro lado, en su trabajo de investigación Chon kan (2017) selecciona 12 puntos de la investigación del LanammeUCR de los cuales el 58% corresponden a MH. Los limos de alta plasticidad son sensibles a los cambios de humedad y tienden a ser colapsables y sufrir grandes deformaciones cuando se encuentran cerca de la saturación (Ávila & Araya, 2014).

Tomando en consideración los aspectos mencionados con anterioridad, para el desarrollo de este proyecto se estudiaron tres suelos identificados por Chon kan (2017) como limos de baja y alta plasticidad de distintas procedencias, considerando que se encuentran bajo diferentes contenidos de humedad.

3.2 Ubicación

Se muestrearon tres puntos ubicados en las provincias de Alajuela, Limón y Guanacaste. Dos de los puntos seleccionados se ubican sobre carreteras que son de gran importancia a nivel nacional. En la Ruta No.27 (San José-Caldera) se encuentra un punto específicamente en el cruce de Atenas con Orotina y en la Ruta No.32 (Braulio Carrillo) se encuentra otro punto por el sector de Guácimo. El último punto en estudio se encuentra ubicado a un costado de la sede del Laboratorio Nacional de Materiales y Modelos Estructurales de Liberia.

En la Figura 19 se mapea la ubicación de los puntos en estudio. El lugar de muestreo de cada punto, el número de muestra correspondiente, la fecha de muestreo y las coordenadas se detallan en el Cuadro 9.

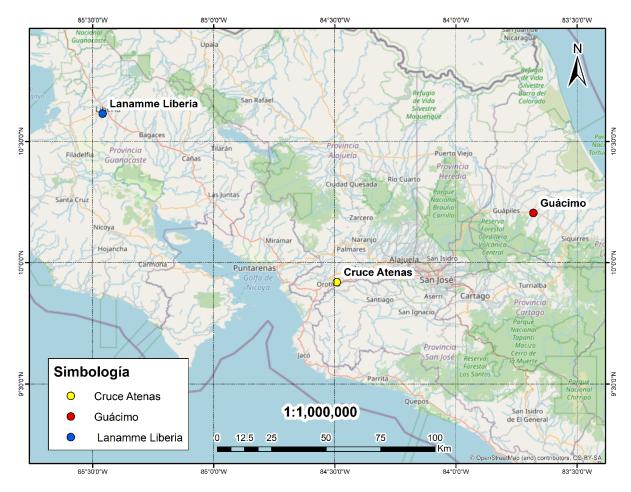


Figura 19. Ubicación de los puntos en estudio

Cuadro 9. Ubicación de puntos de muestreo

Número de muestra	Lugar de muestreo	Latitud	Longitud	Fecha de muestreo
M-0556-2020	RN#27 Cruce Atenas	9,917951	-84,49165	16/06/2020
M-0604-2020	RN#32 Guácimo	10,20359	-83,67983	23/06/2020
M-0666-2020	Sede Liberia, UCR	10,61462	-85,45888	23/06/2020

3.3 Grado de saturación

Como se mencionó anteriormente, una vez que se definen los puntos de muestreo es necesario conocer el grado de saturación al que se encuentra sometido el suelo a lo largo del año. Para ello, se utilizan los resultados del avance de la investigación del LanammeUCR (Ávila, 2021) titulada "Análisis mecánico de subrasantes en distintas condiciones de humedad".

El informe presenta mapas del grado de saturación de los suelos de Costa Rica que se encuentran divididos en las regiones climáticas que establece el Instituto Meteorológico Nacional (IMN) según las características físico-geográficas de cada zona, las cuales son: Zona Norte, Pacífico Norte, Pacífico Central, Pacífico Sur, Vertiente del Caribe y Valle Central.

Estos fueron realizados para la época lluviosa (Figura 20), la cual comprende los meses de mayo, junio, julio, agosto, setiembre y octubre; y para la época seca (Figura 21) que abarca los meses de diciembre, enero, febrero y marzo. Los datos de saturación promedio toman valores que van desde el 50% hasta el 95% de saturación según la época del año.

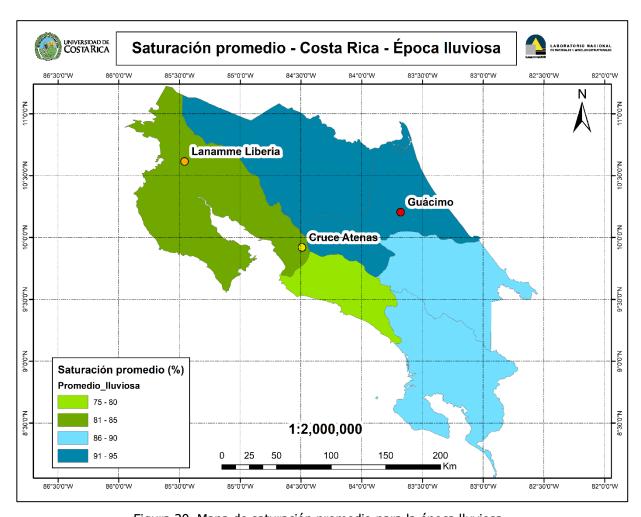


Figura 20. Mapa de saturación promedio para la época lluviosa

Fuente: (LanammeUCR, 2021) Modificado por: (Alfaro, 2021)

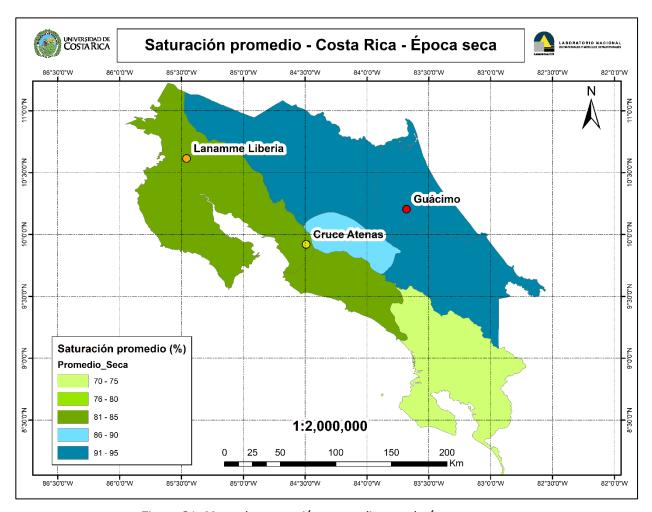


Figura 21. Mapa de saturación promedio para la época seca

Fuente: (LanammeUCR, 2021) Modificado por: (Alfaro, 2021)

Como se observa en los mapas anteriores la región Pacífico Norte se encuentra sometida a saturaciones promedio que oscilan entre el 80% y 85%. Los puntos muestreo realizados en la Sede Liberia, UCR (M-0666-2020) y en el cruce de Atenas (M-0556-2020) se encuentran dentro de esta región. Por lo tanto, es de esperar que el grado de saturación en estos suelos a lo largo del año se encuentre dentro este de este rango.

El suelo muestreado en Guácimo (M-0604-2020) se encuentra ubicado en la región Caribe Norte. Según los mapas presentados anteriormente, el grado de saturación en los suelos de esta zona se encuentran entre el 90% y 95% de saturación en promedio.

Mediante la base de datos que generó el LanammeUCR en esta investigación, se obtienen valores de saturación en suelos muestreados cerca de los puntos en estudio. Para los suelos

muestreados en Liberia se obtienen saturaciones que van desde el 47% hasta el 90%. En la zona de Atenas y Orotina la saturación de los suelos a lo largo del año oscila entre el 85% y el 97%. Por su parte, para los suelos en Guácimo se registraron grados de saturación que van desde el 77% hasta el 96%.

4 ENSAYOS DE LABORATORIO

4.1 Caracterización física

Como se mencionó anteriormente en la metodología, los suelos muestreados fueron sometidos a los siguientes ensayos de laboratorio: análisis granulométrico, límites de Atterberg y proctor estándar. Estos ensayos de caracterización fueron realizados en el Laboratorio de Geotecnia del LanammeUCR. Los valores de gravedad específica y humedad natural del suelo fueron obtenidos de los ensayos realizados por el LanammeUCR para la investigación titulada "Análisis mecánico de subrasantes en distintas condiciones de humedad", realizada por la Unidad de Investigación en Infraestructura de Transporte. A continuación, se presenta la descripción y los resultados obtenidos para cada uno de los suelos.

4.1.1 Cruce Atenas (M-0556-2020)

Suelo limoso color rojizo combinado con suelo semi compacto de color amarillento de posible origen volcánico (ver Figura 22).

Figura 22. Suelo Cruce Atenas-Orotina (M-0556-2020)

En la Figura 23 se muestra la curva granulométrica del suelo.

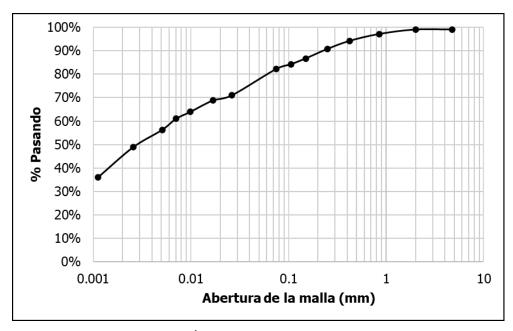


Figura 23. Curva granulométrica suelo Cruce Atenas-Orotina (M-0556-2020)

En el Cuadro 10 se presenta un resumen de las propiedades del suelo obtenidas mediante los ensayos de caracterización.

Cuadro 10. Características físicas del suelo Cruce Atenas-Orotina (M-0556-2020)

Límites de Atterberg		Gravedad específica	Humedad natural	Densidad seca máxima	Humedad óptima
LL	58%				
LP	32%	2,873	29,6%	1534 kg/m³	27,1%
IP	27				

Los puntos obtenidos en el ensayo de proctor estándar se muestran en la Figura 24.

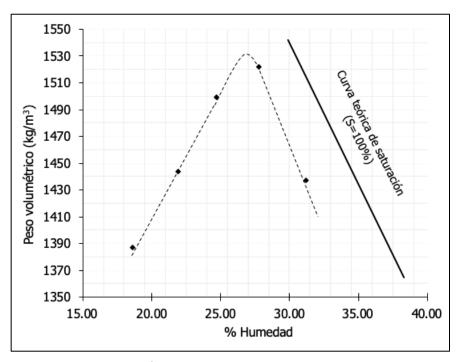


Figura 24. Proctor estándar suelo Cruce Atenas-Orotina (M-0556-2020)

La porosidad (n) y la relación de vacíos (e) obtenidos del material al ser compactado se muestran en el Cuadro 11. De esta información se determina que el suelo en su estado óptimo alcanza una saturación del 89.2%.

Cuadro 11. Relación de vacíos y porosidad a y=1534kg/m3 y w=27,1% (M-0556-2020)

Relación de vacíos "e"	Porosidad "n" (%)
0,87	46,61

Considerando los resultados presentados anteriormente, se determina que el suelo proveniente del Cruce de Atenas, muestra M-0556-2020, corresponde a un suelo tipo MH "Limo arcilloso" según el Sistema Unificado de Clasificación de Suelos (SUCS). Según el sistema de clasificación AASHTO corresponde a un suelo A-7-5 (25).

4.1.2 Guácimo (M-0604-2020)

Suelo limoso color café claro combinado con suelo semi compacto de veta tipo sulfato, pigmentos color amarillento, donde predomina suelo homogéneo (ver Figura 25).

Figura 25. Suelo Guácimo (M-0604-2020)

Los resultados del análisis granulométrico realizado al suelo de Guácimo se presentan en la curva granulométrica de la Figura 26.

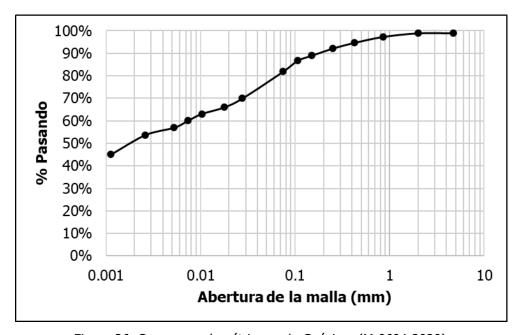


Figura 26. Curva granulométrica suelo Guácimo (M-0604-2020)

En el Cuadro 12 se presenta un resumen de las propiedades del suelo obtenidas mediante los ensayos de caracterización.

Cuadro 12. Características físicas del suelo Guácimo

Límites de Atterberg		Gravedad específica	Humedad natural	Densidad seca máxima	Humedad óptima
LL	62%				
LP	44%	2,769	53,5%	1302 kg/m³	37,2%
IP	18%				

Del ensayo proctor estándar se obtuvieron los resultados que se muestran en la Figura 27.

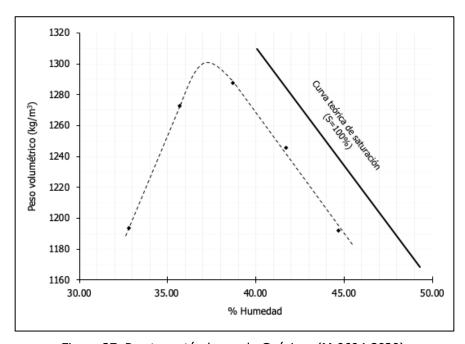


Figura 27. Proctor estándar suelo Guácimo (M-0604-2020)

La porosidad (n) y la relación de vacíos (e) obtenidos del material al ser compactado se muestran en el Cuadro 13. De esta información se determina que el suelo en su estado óptimo alcanza una saturación del 91.4%.

Cuadro 13. Relación de vacíos y porosidad a y=1302kg/m3 y w=37,2% (M-0604-2020)

Relación de vacíos "e"	Porosidad "n" (%)
1,13	52,98

Según los resultados presentados anteriormente, se determina que la muestra M-0604-2020 proveniente de Guácimo, corresponde a un suelo tipo MH "Limo arcilloso" según el Sistema Unificado de Clasificación de Suelos (SUCS). Por el sistema de clasificación AASHTO corresponde a un suelo A-7-5 (20).

4.1.3 Sede Liberia UCR (M-0666-2020)

Suelo limo de alta plasticidad, color café claro combinado con suelo meteorizado de color amarillento de origen volcánico con alto contenido de piurita (ver Figura 28).

Figura 28. Suelo Sede Liberia UCR (M-0666-2020)

En la Figura 29 se presenta la curva granulométrica del suelo.

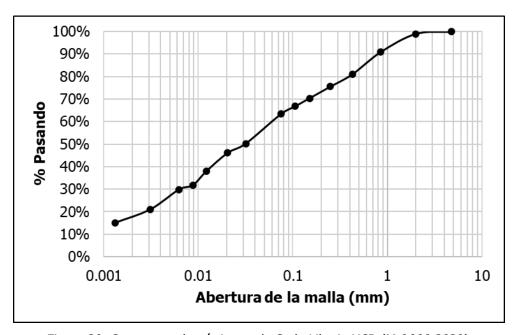


Figura 29. Curva granulométrica suelo Sede Liberia UCR (M-0666-2020)

En el Cuadro 14 se presenta un resumen de las propiedades del suelo obtenidas mediante los ensayos de caracterización.

Cuadro 14. Características físicas del suelo Sede Liberia UCR

Límites de Atterberg		Gravedad específica	Humedad natural	Densidad seca máxima	Humedad óptima
LL	36%				
LP	25%	2,540	17,3%	1634 kg/m³	19,3%
IP	10%				

Del ensayo de proctor estándar realizado al suelo de la Sede de Liberia de la UCR se obtuvieron los resultados que se grafican en la Figura 30.

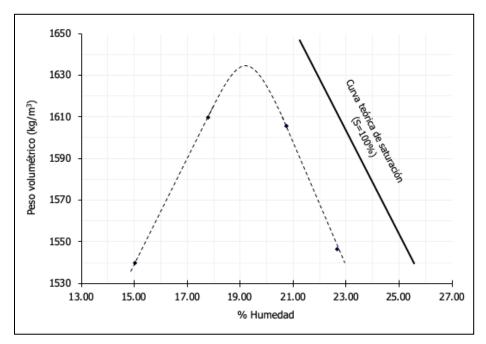


Figura 30. Proctor estándar suelo Sede Liberia UCR (M-0666-2020)

La porosidad (n) y la relación de vacíos (e) obtenidos del material al ser compactado se muestran en el Cuadro 15. De esta información se determina que el suelo en su estado óptimo alcanza una saturación del 88.4%.

Cuadro 15. Relación de vacíos y porosidad a $\gamma=1634$ kg/m³ y w=19,3% (M-0666-2020)

Relación de vacíos "e"	Porosidad "n" (%)
0,55	35,67

Según los resultados presentados anteriormente, se determina que la muestra M-0604-2020 proveniente de Guácimo, corresponde a un suelo tipo ML "Limo ligeramente plástico" según el Sistema Unificado de Clasificación de Suelos (SUCS). Por el sistema de clasificación AASHTO corresponde a un suelo A-4.

4.2 Curva característica Suelo-Agua (SWCC)

Para determinar la SWCC se utilizan los modelos generados por Chon kan (2017) asociados a suelos utilizados en proyectos carreteros. Partiendo de los resultados obtenidos para los ensayos de caracterización física de los suelos muestreados, se seleccionan las curvas características Suelo-Agua (SWCC) a utilizar según el tipo de suelo.

El modelado de las curvas de retención lo realizó utilizando los modelos de Fredlund y Xing (1994) y Van Genuchten (1980) mediante los ensayos del Aparato de Richards, las Celdas Temple y el método del Papel Filtro (Chon kan, 2017).

Ambos modelos presentaron un buen ajuste a los datos obtenidos. Sin embargo, en el caso del modelo de Van Genuchten (1980) la validez estadística de los parámetros no permite tener confianza al 95% en los resultados. Por su parte, el modelo de Fredlund y Xing (1994) permitió un ajuste adecuado, incluso para altas presiones.

Partiendo del modelo de Fredlund y Xing (1994). Chon kan (2017) generó dos modelos capaces de predecir la curva Característica Suelo-Agua de un suelo sin necesidad de realizar el ensayo de laboratorio. Principalmente, propuso un modelo general basado en los distintos suelos analizados por el autor. Siguiendo la misma línea, propuso un modelo destinado únicamente para suelos con contenido limoso.

El modelo propuesto por Chon kan (2017) para suelos con contenido limoso, basado en Fredlund y Xing con un R² ajustado de 0,953, tiene la forma descrita en la ecuación 13:

$$\theta_{W} = \left[1 - \frac{\ln\left(1 + \frac{h}{h_{T}}\right)}{\ln\left(1 + \frac{10^{6}}{h_{T}}\right)}\right] \left[\frac{\theta_{S}}{\left[\ln\left[\exp(1) + \left(\frac{h}{0.5771}\right)^{0.8451}\right]\right]^{0.3226}}\right]$$
 (Ecuación 13)

Donde,

*θ*_w: contenido volumétrico de agua

𝔞: contenido volumétrico de saturación

h: Succión matricial kPa

 h_r : Parámetro función de la de la succión a la cual se establece el contenido residual de agua en kPa. [h_r = 3000 kPa para suelos limosos]

Para el cálculo del contenido volumétrico de saturación (θ_s) se utiliza la regresión propuesta por el mismo autor que contempla las variables de límite líquido (LL), índice de plasticidad (IP), porcentaje pasando la malla No.4 y la malla No.200, coeficiente de uniformidad (C_u) y coeficiente de curvatura (C_c), diámetro para el 60% de las partículas y por último la densidad seca máxima provista del Proctor Estándar. Dicha regresión presentó un coeficiente de determinación de 0,9687 y tiene la forma mostrada en la ecuación 14:

$$\theta_{s} = 3.33859 - 0.0071107X_{LL} - 1.927596X_{\#4} + 0.3784705X_{\#200} - 0.004333X_{Cu} \\ + 0.0852703X_{Cc} - 0.0739018D_{60} - 0.0004566X_{\gamma d}$$
 (Ecuación 14)

El contenido volumétrico de saturación obtenido para cada uno de los suelos, así como las variables utilizadas para la regresión se presentan en el Cuadro 16.

Cuadro 16. Variables utilizadas para obtener el contenido volumétrico de saturación

Suelo	θs	LL	IP	No.4	No.200	Cu	Cc	D ₁₀ (mm)	D ₃₀ (mm)	D ₆₀ (mm)	γ _{d max} (kg/m³)
Atenas	0,594	58,37	26,77	1	0,8218	6	0,17	0,001	0,001	0,006	1534
Guácimo	0,675	62,25	18,13	1	0,8462	7	0,14	0,001	0,001	0,007	1302
Liberia UCR	0,437	35,81	10,48	1	0,634	60	0,6	0,001	0,006	0,060	1634

En la Figura 31, la Figura 32 y la Figura 33 se presentan las curvas SWCC obtenidas para los tres suelos en estudio: Atenas, Guácimo y Sede Liberia UCR, respectivamente.

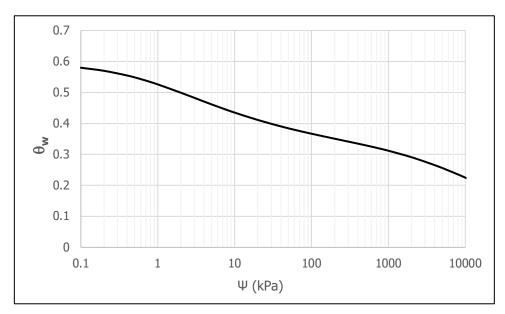


Figura 31. Curva SWCC suelo Cruce Atenas (M-0556-2020)

Fuente: (Chon kan, 2017)

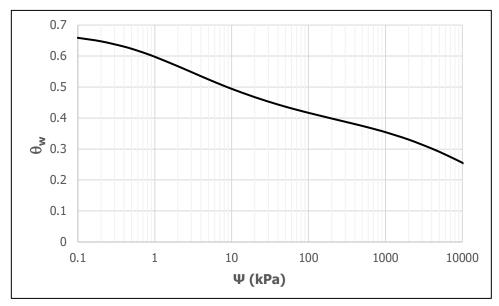


Figura 32. Curva SWCC suelo Guácimo (M-0604-2020)

Fuente: (Chon kan, 2017)

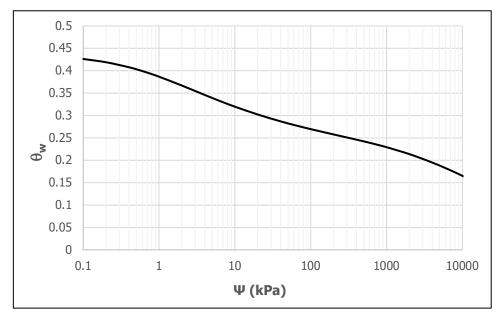


Figura 33. Curva SWCC suelo Sede Liberia UCR (M-0666-2020)

Fuente: (Chon kan, 2017)

4.3 Módulo resiliente

En el apartado *3.3 Grado de saturación* se establecieron los rangos de saturación a los que se encuentran sometidos los suelos al largo del año según la información obtenida de los mapas de saturación y la base de datos del LanammeUCR (Ávila, 2021).

• Cruce Atenas: 85% - 97%

Guácimo: 77% - 96%

• Sede Liberia UCR: 47% - 90%

El contenido de humedad se obtiene del grado de saturación mediante la ecuación 3.

Una vez determinado el contenido de humedad de cada punto se procede a determinar el contenido de agua volumétrico (Ecuación 15) con el cual se determinará las succiones matriciales a utilizar basándose en la curva SWCC obtenida para cada suelo.

$$\theta_w = w \times \frac{\rho_d}{\rho_w}$$
 (Ecuación 15)

Donde,

*⊕*_w: contenido volumétrico de agua

w: contenido de humedad

 ρ_d : densidad del espécimen seco

 ρ_w : densidad del agua

A continuación, se muestran los datos utilizados para la realización de los ensayos de Mr para cada una de las muestras, mismos que se llevaron a cabo utilizando el protocolo propuesto por Ávila (2017) (Anexo I).

4.3.1 Cruce Atenas

A partir de la curva SWCC obtenida para el suelo de Atenas que se presenta en la Figura 31 se determinan las succiones bajo las cuales se realizará el ensayo de módulo resiliente (Figura 34). En el Cuadro 17 se presenta un resumen de las saturaciones seleccionadas y sus respectivas succiones, así como la diferencia de humedad de los puntos seleccionados versus el estado óptimo del suelo.

Cuadro 17. Datos utilizados para la ejecución del ensayo de MR, Cruce Atenas

Saturación (%)	w (%)	<i>6</i> w (%)	Ψ (kPa)	Diferencia de humedad respecto a la óptima (%)
77	23,32	35,32	177	-3,88
80	24,23	36,29	134	-2,97
89	27,20	39,89	26	0
95	28,77	42,81	12	+1,57

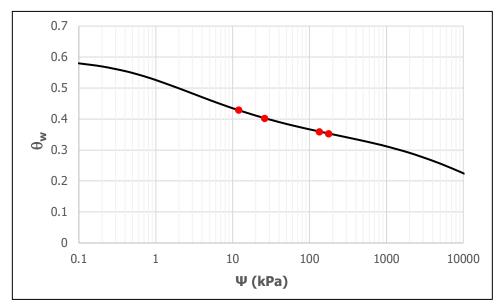


Figura 34. Puntos de succión matricial para ensayo MR, Cruce Atenas

Se realizaron dos especímenes por succión, cuando la variabilidad entre las muestras era considerable se realizó una tercera réplica. En la Figura 35 se presentan los resultados obtenidos de módulo resiliente para cada una de las succiones analizadas.

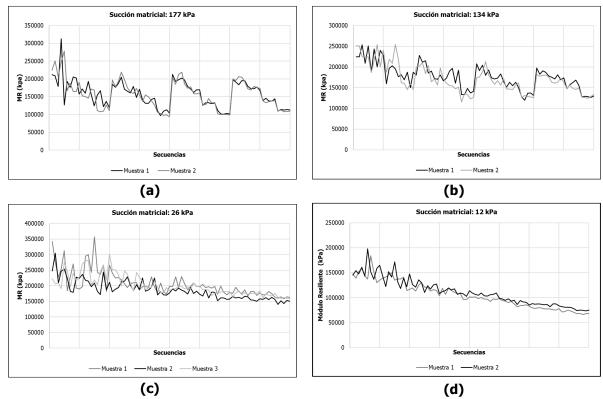


Figura 35. Datos de módulo obtenidos para diferentes succiones (a) 177 kPa, (b) 134 kPa, (c) 26 kPa y (d) 12 kPa, Cruce Atenas

En la Figura 36 se muestra un promedio de los últimos cinco resultados de módulo obtenidos para cada secuencia y para cada succión. En el apéndice 1 se presentan los resultados individuales obtenidos.

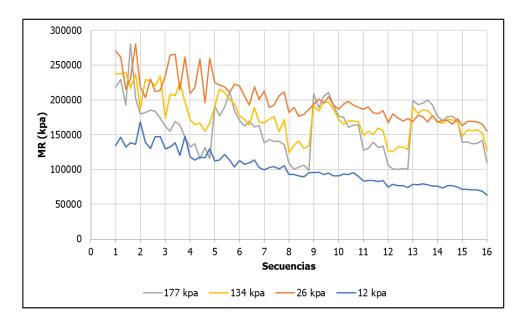


Figura 36. Datos de módulo obtenidos para diferentes succiones, Cruce Atenas

Según la teoría, a mayores valores de succión se espera un incremento en la rigidez del material. En la figura anterior se observa que para el suelo de Atenas este comportamiento no se cumple en su totalidad. Los menores valores de módulo están asociados a la menor succión aplicada. No obstante, los mayores valores de módulo se asocian a la succión de 26 kPa. Las succiones de 134 kPa y 177 kPa registran módulos que, en su mayoría, se encuentra entre los rangos establecidos por las menores succiones.

Durante la secuencia de preacondicionamiento, no se registran valores de módulo. Se puede observar que para las menores succiones (12 kPa y 26 kPa), asociadas a las mayores saturaciones, se sigue una misma tendencia en el comportamiento del módulo. Para las primeras cinco secuencias se registran los mayores módulos y estos van disminuyendo hasta alcanzar los menores valores en las últimas secuencias.

Por su parte, las succiones de 134 kPa y 177 kPa, asociadas a los menores valores de saturación (77%-80%) presenta un comportamiento similar entre sí. Se observa que el valor del módulo decrece conforme avanzan las secuencias, pero no continuamente hasta llegar al último ciclo

de carga. Cada cuatro secuencias se produce un aumento repentino en los módulos registrados para posteriormente continuar decreciendo conforme se aplican los ciclos de carga.

4.3.2 Guácimo

A partir de la curva SWCC obtenida para el suelo de Guácimo se determinan las succiones bajo las cuales se realizará el ensayo de módulo resiliente (Figura 37). En el Cuadro 18 se presenta un resumen de las saturaciones seleccionadas y sus respectivas succiones, así como la diferencia de humedad de los puntos seleccionados versus el estado óptimo del suelo. Cabe destacar que debido a la escasez de material no se pudieron analizar la totalidad de puntos esperados. Por lo tanto, se analiza el estado óptimo del suelo y dos puntos por debajo de este, determinados a partir de los mapas de saturación del LanammeUCR.

Cuadro 18. Datos utilizados para la ejecución del ensayo de MR, Guácimo

Saturación (%)	w (%)	<i>6</i> w (%)	Ψ (kPa)	Diferencia de humedad respecto a la óptima (%)
75	30,61	40,55	153	-6,59
80	32,65	43,26	58	-4,55
91	37,20	48,76	11	0

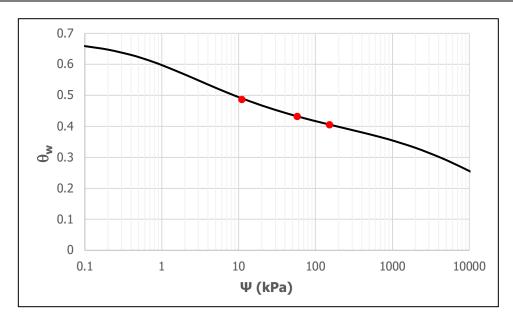


Figura 37. Puntos de succión matricial para ensayo MR, Guácimo

Se realizaron tres especímenes por succión de los cuales se seleccionaron las muestras que presentaban menor variabilidad entre sí. En el apéndice I se presentan los resultados de

confección de los especímenes de ensayo. En la Figura 38 se presentan los resultados obtenidos de módulo para una succión de (a) 153 kPa, (b) 58 kPa y (c) 11 kPa.

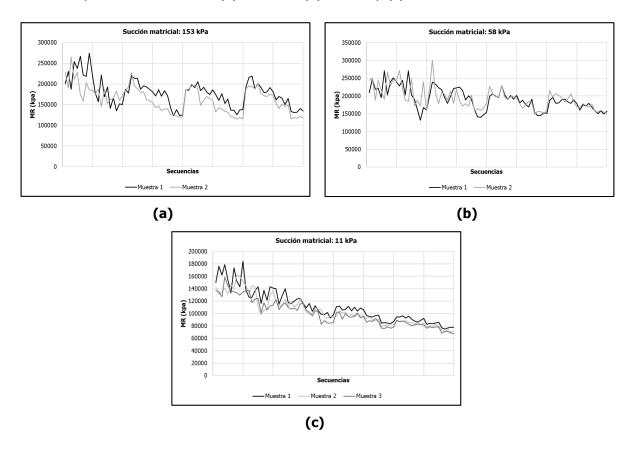


Figura 38. Datos de módulo obtenidos para diferentes succiones (a) 153 kPa, (b) 58 kPa y (c) 11 kPa, Guácimo

En la Figura 39 se muestra un promedio de los últimos cinco resultados de módulo obtenidos para cada secuencia y para cada succión.

Podemos observar que se sigue un comportamiento similar al presentado por el suelo anterior. Donde el menor valor de succión está relacionado con los menores valores de módulo, pero los mayores valores de módulo están asociados a la succión de 58 kPa y no a la de 153 kPa como era esperarse.

En la secuencia de preacondicionamiento no se registran valores de módulo resiliente. Para todas las succiones los mayores módulos se registran en las primeras cinco secuencias y se evidencia la disminución de este valor conforme aumenta la cantidad de ciclos aplicados al material. Al final de las secuencias 8 y 12 se observa un aumento en el módulo resiliente el cual es mayor conforme aumenta la succión aplicada.

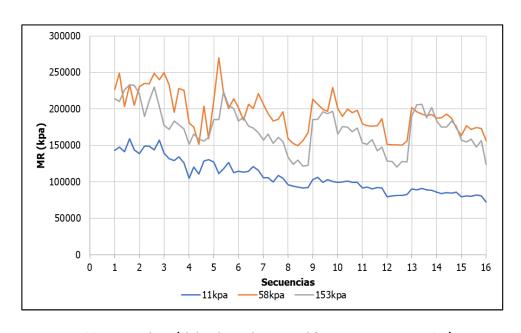


Figura 39. Datos de módulo obtenidos para diferentes succiones, Guácimo

4.3.3 Sede Liberia UCR

A partir de la curva SWCC obtenida para el suelo de la Sede Liberia, UCR se determinan las succiones bajo las cuales se realizará el ensayo de módulo resiliente (Figura 40). En el Cuadro 19 se presenta un resumen de las saturaciones seleccionadas y sus respectivas succiones, así como la diferencia de humedad de los puntos seleccionados versus el estado óptimo del suelo.

Cuadro 19. Datos utilizados para la ejecución del ensayo de MR, Sede Liberia UCR

Saturación (%)	w (%)	<i>6</i> _w (%)	$\Psi_{m}\left(\textbf{kPa}\right)$	Diferencia de humedad respecto a la óptima (%)
72,5	15,70	25,98	177	-3,60
80	17,32	28,67	41	-1,98
88	19,30	31,54	12	0
95	20,57	34,04	5	+1,27

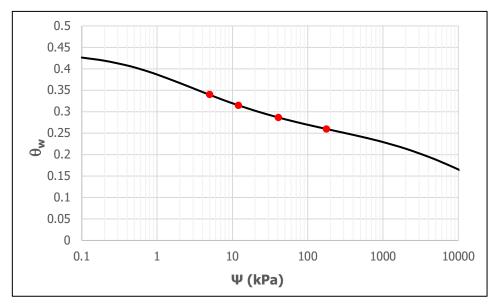


Figura 40. Puntos de succión matricial para ensayo MR, Sede Liberia UCR

Se realizaron dos especímenes por succión (ver apéndice I). En la Figura 41 se presentan los resultados obtenidos de módulo para las succiones seleccionadas y en el apéndice II se muestran todos los resultados individuales obtenidos.

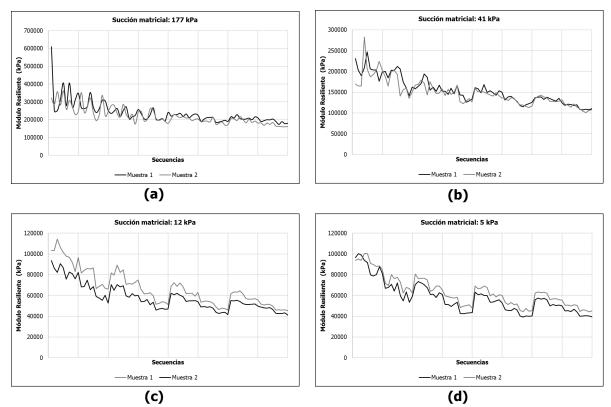


Figura 41. Datos de módulo obtenidos para diferentes succiones (a) 177 kPa, (b) 41 kPa, (c) 12 kPa y (d) 5 kPa, Sede Liberia UCR

Como se observa en la Figura 41 las primeras secuencias presentan mayor variabilidad en los datos de módulo registrados lo que se puede deber al acomodo que se da de las partículas al inicio de la prueba, ya que se observa que conforme pasan las secuencias se va dando un comportamiento más similar entre muestras sometidas a las mismas succiones.

En la Figura 42 se muestra un promedio de los últimos cinco resultados de módulo obtenidos para cada secuencia y para cada succión.

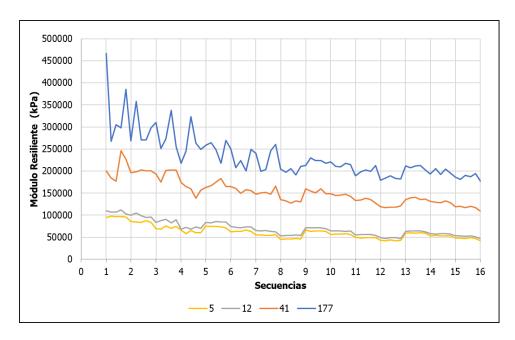


Figura 42. Datos de módulo obtenidos para diferentes succiones, Sede Liberia UCR

Se puede observar en la figura anterior que existe un incremento en los valores de módulo resiliente conforme aumenta la succión matricial. Como se ha mencionado con anterioridad, no se registraron valores de módulo para la secuencia de preacondicionamiento. En las primeras cuatro secuencias registran los mayores valores de módulo, los cuales van disminuyendo conforme avanza la aplicación de los ciclos de carga. Los menores valores de módulo se registran entre las secuencias 8-9 y 12-13.

Para las succiones de 5 kPa y 12 kPa, saturaciones del 95% y 88% respectivamente, no se muestra mucha variación entre los resultados de módulo obtenidos. Ávila (2017), establece que los suelos con un porcentaje de saturación mayor al 85% se pueden considerar saturados lo que implicaría una similitud en el comportamiento ante carga cíclica.

Para este suelo se puede concluir, a partir de las succiones analizadas, que existen un incremento en la rigidez del material al considerar la variación de la humedad.

5 CALIBRACIÓN Y MODELACIÓN MATEMÁTICA

5.1 Calibración de modelos

Para la calibración de los modelos se consideran las tres ecuaciones que se describen en la sección 2.4.2 "*Determinación del Mr*", las cuales corresponden al Modelo Universal Modificado (MUM) de Cary (2008) y a los modelos exponencial y polinómico elaborados por Ávila (2017) (ver Cuadro 8).

Estos modelos utilizan las siguientes variables de entrada (Cuadro 20):

Cuadro 20. Variables más utilizadas para predecir el Mr

Símbolo	Variable	Definición
σ_3 , σ_2	Esfuerzos de confinamiento	$\sigma_3 = \sigma_2$, se miden directamente
σ_d	Esfuerzo desviador	Se mide directamente
σ_1	Esfuerzo principal axial	$\sigma_1 = \sigma_d + \sigma_3$
θ	Invariante de esfuerzos	$\theta = \sigma_1 + \sigma_2 + \sigma_3$
$ au_{oct}$	Esfuerzo cortante octaédrico	$\tau_{oct} = \frac{1}{3}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}$
ψ_m	Succión matricial	$\psi_m = u_a - u_w$

Fuente: (Ávila, 2017)

Influencia de dichas variables para la predicción del Mr (Ávila, 2017)

- Para suelos de grano fino el módulo resiliente decrece con el incremento de esfuerzo desviador dinámico. Además, se ha demostrado que hay poca influencia del esfuerzo de confinamiento en el módulo.
- El invariante de esfuerzos y el esfuerzo cortante octaédrico son función del esfuerzo de confinamiento y el esfuerzo desviador. Por lo que, un incremento en alguna de estas variables llevará a un aumento en el componente volumétrico del modelo.
- En la mayoría de los casos, conforme aumenta la succión matricial existe un aumento del módulo resiliente. Aspecto que no se cumplió para dos de los tres suelos analizados en esta investigación.

5.1.1 Procedimiento

Inicialmente para la calibración se utilizó el programa Excel para realizar las regresiones lineales de los modelos basadas en el método de mínimos cuadrados. Al ser las ecuaciones del MUM y

el modelo exponencial no lineales se busca linealizarlas aplicando logaritmos en ambos lados de la ecuación donde se obtienen las ecuaciones 16 y 17.

Modelo Universal Modificado

$$LnMr = Ln(k_1 \times P_a) + k_2 \times Ln\left(\frac{\theta_{net}}{P_a}\right) + k_3 \times Ln\left(\frac{\tau_{oct}}{P_a} + 1\right) + k_4 \times Ln(\frac{\psi_m}{P_a} + 1)$$
 (Ecuación 16)

Modelo exponencial

$$LnMr = Ln(k_1 \times P_a) + k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi_m}{P_a}$$
 (Ecuación 17)

Como los ensayos se realizaron en condición drenada tenemos que los términos $\Delta \psi_m$ y $\Delta u_{w\text{-sat}}$ son cero.

Una vez realizadas las regresiones con el fin de determinar si los modelos y los coeficientes son adecuados se realizan pruebas de inferencia estadística para los parámetros, así como pruebas para el análisis de la varianza. Se determina que los datos de los diferentes suelos no cumplen el principio de homocedasticidad (varianza constante de los errores) por lo que los resultados de los estimadores aplicando el método de mínimos cuadrados no es la más eficiente.

En presencia de heterocedasticidad los coeficientes estimados son consistentes pero los estimadores de la varianza y los errores estándar no lo son. Por lo tanto, en los modelos analizados, se utiliza el concepto de "errores estándares robustos" para ajustar estos valores y así determinar estadísticos que incluyan la variabilidad de los datos en el modelo. Para ejecutar este procedimiento se utilizó el programa STATA 12.1 cuya licencia pertenece al LanammeUCR.

Para realizar una comparación entre los modelos y determinar la calidad de los mismos, se utilizan dos parámetros citados por Ávila (2017) los cuales corresponden al R² ajustado y al coeficiente de Akaike (AIC). El primero se utiliza, a pesar de que no todos los modelos son lineales, con el fin de realizar una comparación que sea comprensible para el lector. Por su parte, el segundo lo recomienda utilizar dado que no se cumple el supuesto de homocedasticidad.

5.1.2 Cruce Atenas

Para el suelo de Atenas se cuenta con 80 líneas de datos por espécimen, esto debido a que el programa reporta los últimos 5 valores de todos los parámetros por secuencia, exceptuando el preacondicionamiento, para cada ensayo. Por lo tanto, para este análisis se utilizan un total de 720 entradas de datos.

5.1.2.1 Análisis de correlación

Se realiza un análisis de correlación con el fin de determinar la dependencia que existe entre las variables utilizadas. A partir de los resultados del Cuadro 21 se determina que para aquellas variables en las que el coeficiente se aproxima a la unidad existe una dependencia entre las variables, ya sea positiva o negativa.

Cuadro 21. Análisis de correlación en las variables utilizadas

	σ ₃ (kPa)	σd (kPa)	Mr (kPa)	Ψ _m (kPa)	θ _{neto} (kPa)	τ _{oct} (kPa)
σ ₃ (kPa)	1					
σd (kPa	0,122704	1				
Mr (kPa)	0,352533	-0,34258	1			
Ψm (kPa)	0,00000	-0,00475	0,058516	1		
θ_{neto} (kPa)	0,884553	0,571453	0,130495	-0,00223	1	
$ au_{\text{oct}}(kPa)$	0,122704	1	-0,34258	-0,00475	0,571453	1

Según lo que establece la teoría, para el suelo de Atenas, existe una dependencia directa del invariante de esfuerzos con el esfuerzo de confinamiento y el esfuerzo desviador, así como con el esfuerzo cortante octaédrico. Por su parte, el módulo resiliente depende del esfuerzo cortante octaédrico, del esfuerzo desviador y, contrario a lo esperado, del esfuerzo de confinamiento. Para este conjunto de datos se observa que no existe una relación directa entre el módulo y la succión matricial, contrario a lo esperado.

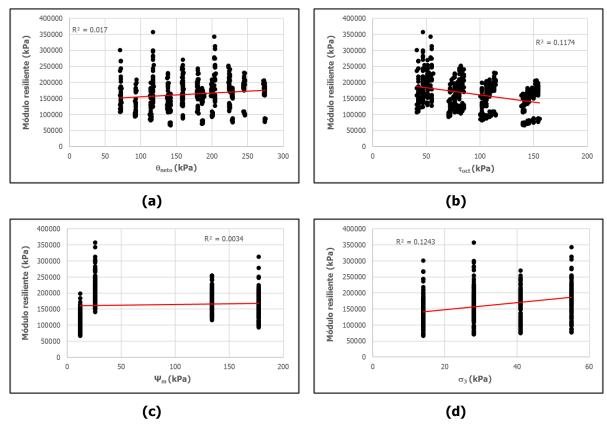


Figura 43. Efecto de las variables analizadas en el MR (a) Invariante de esfuerzos, (b) Esfuerzo cortante octaédrico, (c) Succión matricial y (d) Presión de confinamiento

Como se puede observar en la Figura 43 existe un aumento en el módulo conforme aumenta el esfuerzo de confinamiento (d), así como existe una disminución producto de un aumento en el esfuerzo cortante octaédrico (b), tal y como era de esperarse. El invariante de esfuerzos (a) y la succión matricial (c) no causan una variación significativa en el módulo para este conjunto de datos.

5.1.2.2 <u>Modelo Universal Modificado</u>

Mediante el procedimiento descrito en el apartado 5.1.1 se realiza una regresión lineal con errores estándares robustos del modelo propuesto por Cary (2008). Los resultados se presentan en el Cuadro 22 donde podemos observar que las variables son significativas al 95% de confianza.

Cuadro 22. Resultados obtenidos de la regresión lineal para el MUM, Cruce Atenas

Modelo Universal Modificado

$$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4}$$

Pa	rámetros	Error estándar	Estadístico t	AIC	R ²
k ₁	2295,5621	107,568	331,42		
k_2	0,4116	0,0345	11,93	0.100	0.205
k ₃	-1,0044	0,0257	-15,93	0,180	0,285
k 4	0,1232	0,0373	4,78		

En la Figura 44 se muestra el ajuste de los datos según el modelo calibrado. Podemos observar que los datos muestran una dispersión importante y los valores de módulo no se predicen adecuadamente para los rangos de módulo estudiados para el suelo del Cruce de Atenas. Además, se presenta una tendencia a subestimar los valores de MR mayores a 200000 kPa.

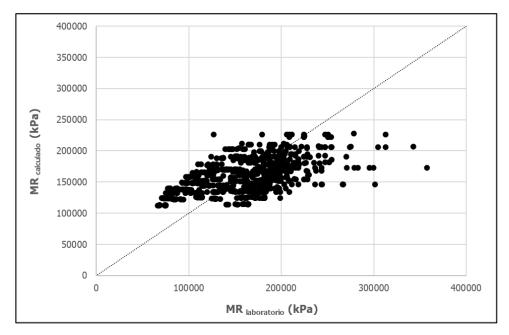


Figura 44. Ajuste de los datos medidos vs los calculados para el MUM, Cruce Atenas

5.1.2.3 Modelo polinómico

Se sigue el mismo procedimiento descrito en el apartado 5.1.1 para el modelo polinómico propuesto por Ávila (2017). En el Cuadro 23 se presentan los resultados de la regresión lineal ejecutada utilizando errores estándares robustos, donde se evidencia que todas las variables son significativas.

Cuadro 23. Resultados obtenidos de la regresión lineal para el modelo polinómico, Cruce Atenas

Modelo Polinómico

$$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct}^2 + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto}$$

Pa	rámetros	Error estándar	Estadístico t	AIC	R ²
k_1	142012,2	7247,453	19,59		
k_2	704,0959	54,5301	12,91		
k ₃	-0,0214	0,0016	-13,35	22.041	0.200
k 4	-13,7943	1,6365	-8,43	23,941	0,366
k 5	0,0613	0,0098	6.25		
k 6	407,308	32,3062	12.61		

La Figura 45 presenta el ajuste de los datos donde se puede observar que, al igual que el MUM calibrado, existe una gran dispersión de los datos por lo que los valores de módulo no se predicen adecuadamente. El modelo tiende a sobreestimar aquellos valores de módulo menores a 150000 kPa y a subestimar los valores de módulo mayores a este valor.

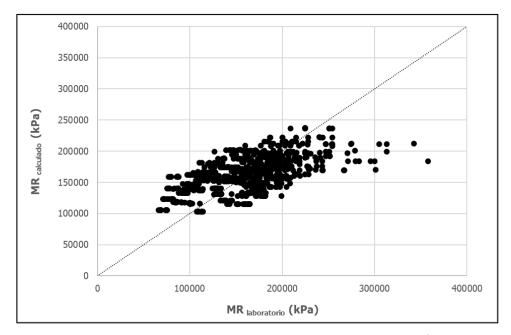


Figura 45. Ajuste de los datos medidos vs los calculados para el modelo polinómico, Cruce Atenas

5.1.2.4 Modelo exponencial

Siguiendo el mismo procedimiento descrito anteriormente se calibra el modelo exponencial propuesto por Ávila (2017). En el Cuadro 24 se muestran los resultados de la regresión realizada y en la Figura 46 el ajuste de los datos obtenidos con el modelo calibrado.

Cuadro 24. Resultados obtenidos de la regresión lineal para el modelo exponencial, Cruce Atenas

	Modelo Exponencial							
	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a})}$							
Pa	rámetros	Error estándar	Estadístico t	AIC	R²			
k ₁	1532,6088	104,859	315,58					
k_2	0,2687	0,2266	11,86	0.100	0.272			
k ₃	-0,5152	0,0335	-15,37	0,198	0,273			
k 4	0,0517	0,0142	3,64					

Nuevamente podemos observar en la Figura 46 que el modelo calibrado con los resultados del suelo de Atenas presenta una gran dispersión en los datos. Para valores menores de módulo se sobreestiman los resultados y conforme aumenta el valor este tiende a ser subestimado por el modelo. Por lo tanto, el modelo exponencial calibrado tampoco predice adecuadamente los valores de módulo para este suelo.

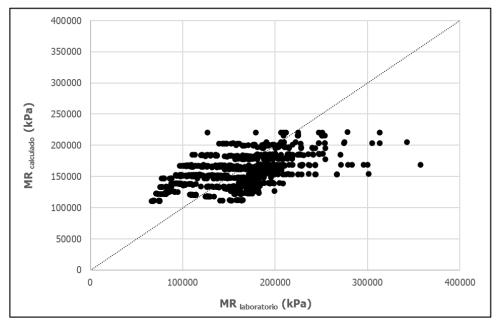


Figura 46. Ajuste de los datos medidos vs los calculados para el modelo exponencial, Cruce Atenas

5.1.2.5 Resumen de modelos

En el Cuadro 25 se presenta un resumen de los resultados obtenidos para la calibración de los modelos con los datos del suelo del Cruce de Atenas. De acuerdo con estos resultados se puede concluir que ninguno de los tres modelos se ajusta adecuadamente a la información recopilada.

Cuadro 25. Resultados obtenidos para los modelos calibrados, Cruce Atenas

	Modelo			t	AIC	R ²
	$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2}$	k ₁	2295,5621	331,42		
NALINA	· - u	k_2	0,4116	11,93	0.100	
MUM	$\times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3}$	k ₃	-1,0044	-15,93	0,180	0,285
	$\times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4}$	k 4	0,1232	4,78		
		k ₁	142012,2	19,59		0,366
	$Mr = k_{1} + k_{2} \times \psi + k_{3} \times \psi^{3} + k_{4} \times \tau_{oct}^{2} + k_{5} \times \tau_{oct}^{3} + k_{6} \times \theta_{neto}$	k_2	704,0959	12,91	23,941	
Polinómico		k 3	-0,0214	-13,35		
Politioffico		k 4	-13,7943	-8,43		
		k_5	0,0613	6.25		
		k 6	407,308	12.61		
		k_1	1532,6088	315,58		0,273
Exponencial	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a})}$	k_2	0,2687	11,86	0,198	
схропенска		k ₃	-0,5152	-15,37		
		k 4	0,0517	3,64		

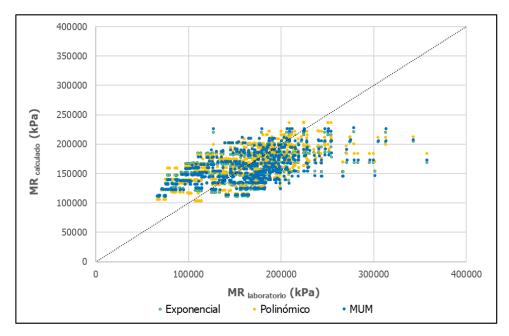


Figura 47. Datos medidos vs los calculados para los modelos, Cruce Atenas

Como se observa en la Figura 47 todos los modelos presentan una dispersión considerable en los datos en la cual tienden a sobrestimar los valores de módulo menores a 150000 kPa y a subestimar los valores de módulo mayores a este valor. Por tanto, el modelo tiende a subestimar en módulo en proporciones muy similares a lo que lo sobrestima para valores menores a los 250000 kPa. Además, a partir de estos modelos no se obtienen valores de MR mayores a los 250000 kPa.

5.1.3 Guácimo

Como se mencionó anteriormente, el programa reporta los últimos 5 valores de todos los parámetros por secuencia para cada ensayo. Por lo tanto, se cuenta con 80 líneas de datos por espécimen lo que hace que se utilice para el análisis un total de 560 entradas de datos para el suelo de Guácimo.

5.1.3.1 Análisis de correlaciones

Para determinar la dependencia de las variables se realiza un análisis de correlación. Los resultados de este análisis se presentan en el Cuadro 26.

σ₃ (kPa) $\sigma_d(kPa)$ Mr (kPa) Ψ_m (kPa) $\tau_{\text{oct}}(kPa)$ θ_{neto} (kPa) σ₃ (kPa) 1 σd (kPa 0,122462 1 1 Mr (kPa) 0,344262 -0,26562 0,515632 Ψ_m (kPa) 0,000000 -0,00018 1 0,00000 θ_{neto} (kPa) 0,884818 0,570787 0,160117 1 0,122462 -0,26562 -0,00018 0,570787 $\tau_{\text{oct}}(kPa)$ 1 1

Cuadro 26. Análisis de la covarianza en las variables utilizadas

Para el rango de datos analizados existe una fuerte dependencia entre el invariante de esfuerzos y los esfuerzos de confinamiento y desviador, así como con el esfuerzo cortante octaédrico, como es de esperarse. El módulo resiliente presenta una leve dependencia con el esfuerzo cortante octaédrico y, por ende, con el esfuerzo desviador. El esfuerzo de confinamiento y la succión matricial son dos variables que afectan el comportamiento del módulo resiliente.

En la Figura 48 podemos observar que existe un aumento en el módulo resiliente conforme aumenta la succión matricial (c) y el esfuerzo de confinamiento (d). Por otra parte, se observa

que conforme aumenta el esfuerzo cortante octaédrico (b) se genera una leve disminución en el valor del módulo. El invariante de esfuerzos (a) al tener una línea de ajuste más horizontal no presenta grandes variaciones en el MR.

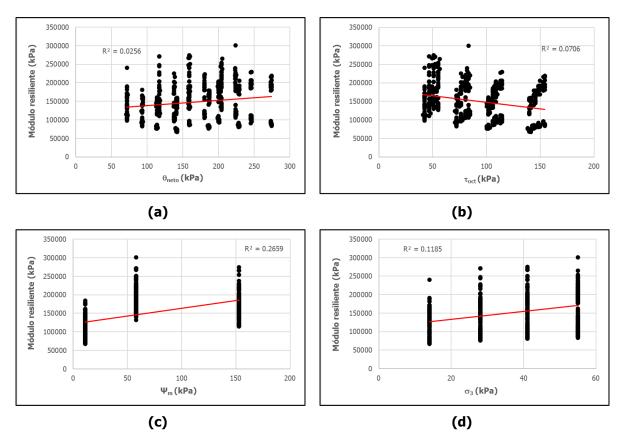


Figura 48. Efecto de las variables analizadas en el MR (a) Invariante de esfuerzos, (b) Esfuerzo cortante octaédrico, (c) Succión matricial y (d) Presión de confinamiento

Para la calibración de los diferentes modelos se sigue el mismo procedimiento planteado para el suelo del Cruce de Atenas.

5.1.3.2 Modelo Universal Modificado

Los resultados obtenidos para la calibración del modelo de Cary (2008) se presentan en el Cuadro 27, donde se puede observar que todas las variables son significativas.

Cuadro 27. Resultados obtenidos de la regresión lineal para el MUM, Guácimo

Modelo Universal Modificado

$$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4}$$

Pa	rámetros	Error estándar	Estadístico t	AIC	R ²
k ₁	1664,6684	104,274	376,83		
k_2	0,4284	0,0298	14,34	0.216	0.500
k ₃	-0,9977	0,0589	-16,94	-0,216	0,598
k 4	0,6142	0,0211	29,04		

En la Figura 49 se muestra el ajuste de los datos para el Modelo Universal calibrado. Podemos observar que para valores de módulo menores a los 100000 kPa el modelo tiende a sobrestimar un poco los datos; sin embargo, las diferencias a la recta de igualdad (x=y) son menores que las observadas para valores mayores de módulo. En el rango de módulos entre los 100000 kPa y los 300000 kPa se evidencia mayor dispersión en los datos, por lo que conforme aumenta el valor del módulo disminuye la capacidad del modelo de predecir adecuadamente.

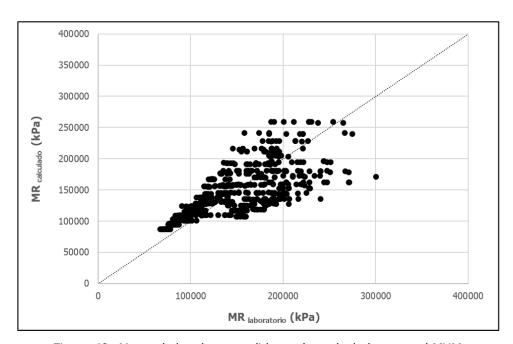


Figura 49. Ajuste de los datos medidos vs los calculados para el MUM

5.1.3.3 Modelo polinómico

En el Cuadro 28 se presentan los valores de los parámetros obtenidos para la calibración del modelo polinómico de Ávila (2017). A diferencia de los demás modelos se observa que este presenta un R² ajustado cercano a la unidad.

Cuadro 28. Resultados obtenidos de la regresión lineal para el modelo polinómico, Guácimo

	Modelo Polinómico						
	Mr =	$k_1 + k_2 \times \psi + k_3 \times \psi$	$k_4 \times \tau_{oct}^2 + k_5 \times \tau_{oct}^2$	$(\tau_{oct})^3 + k_6 \times \theta_{neto}$			
Pa	rámetros	Error estándar	Estadístico t	AIC	R²		
k_1	74032,1	3718,81	19,91				
k_2	2135,889	46,3151	46,12				
k 3	-0,0664	0,0018	-36,45	22 420	0.965		
k 4	-12,6933	0,8869	14,31	22,428	0,865		
k 5	0,0576	0,0052	11,02				
k 6	396,0652	17,0322	23,25				

El ajuste de los datos obtenidos para modelo polinómico calibrado se presenta en la Figura 50. Podemos evidenciar que, a diferencia del modelo anterior, existe una adecuada predicción del módulo cuando los valores son menores a los 250000 kPa. El modelo tiende a subestimar los valores de módulo a partir de los 250000 kPa.

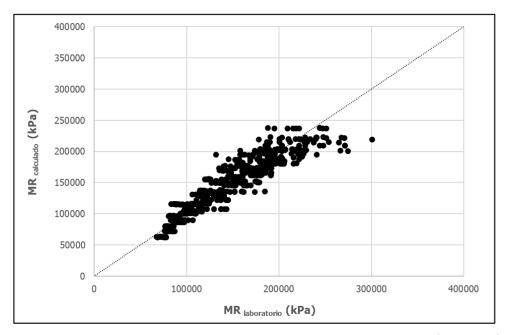


Figura 50. Ajuste de los datos medidos vs los calculados para el modelo polinómico, Guácimo

5.1.3.4 Modelo exponencial

Los resultados obtenidos para la calibración del modelo exponencial de Ávila (2017) con los datos del suelo de Guácimo se presentan en el Cuadro 29. Se puede observar, mediante el estadístico t, que todas las variables son significativas en el modelo.

Cuadro 29. Resultados obtenidos de la regresión lineal para el modelo exponencial, Guácimo

	Modelo Exponencial							
	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a})}$							
Pa	rámetros	Error estándar	Estadístico t	AIC	R²			
k ₁	1148,2964	104,336	358,86					
k_2	0,2752	0,0218	12,60	0.020	0.520			
k ₃	-0,5067	0,0337	-15,01	-0,039	0,520			
k 4	0,3216	0,01263	25,45					

La Figura 51 muestra el ajuste de los datos para el modelo. Podemos observar que existe mucha dispersión en los valores de módulo mayores a los 130000 kPa, caso contrario a los valores de módulo menores a este valor que se ajustan de mejor manera a la recta de igualdad (x=y). No obstante, el modelo sobrestima los valores por debajo de los 130000 kPa.

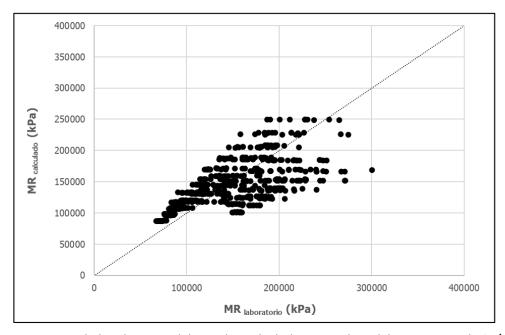


Figura 51. Ajuste de los datos medidos vs los calculados para el modelo exponencial, Guácimo

5.1.3.5 Resumen de modelos

En el Cuadro 30 se presenta un resumen de los resultados obtenidos para los diferentes modelos calibrados con los datos del suelo de Guácimo.

Cuadro 30. Resultados obtenidos para los modelos calibrados, Guácimo

	Modelo	Pa	arámetros	t	AIC	R ²
	Mr		1664,6684	376,83		
MUM	$= k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2}$	k_2	0,4284	14,34	0.246	0.500
IMOIM	$\times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4}$	k 3	-0,9977	-16,94	-0,216	0,598
	$(\overline{P_a} + 1) \times (\overline{P_a} + 1)$	k ₄	0,6142	29,04		
			74032,1	19,91		
	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct}^2 + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto}$	k_2	2135,889	46,12	22,428	0,865
Polinómico		k_3	-0,0664	-36,45		
Polinomico		k 4	-12,6933	14,31		
		k 5	0,0576	11,02		
		k 6	396,0652	23,25		
		k ₁	1148,2964	358,86		
Exponencial	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a})}$	k_2	0,2752	12,60	-0,039	0,520
		k ₃	-0,5067	-15,01		
		k 4	0,3216	25,45		

Para realizar una comparación entre los modelos calibrados se utiliza el R² ajustado y el coeficiente de Akaike. De acuerdo con el criterio de predicción de Akaike el modelo universal modificado (AIC menor) es el que se ajusta mejor a la información. En términos de la correlación lineal ajustada (R² mayor) se determina que el modelo que mejor representa la información analizada es el polinómico.

Los tres modelos predicen adecuadamente los valores de módulo menores a 100000 kPa y sobrestiman los valores mayores a 250000 kPa (ver Figura 52).

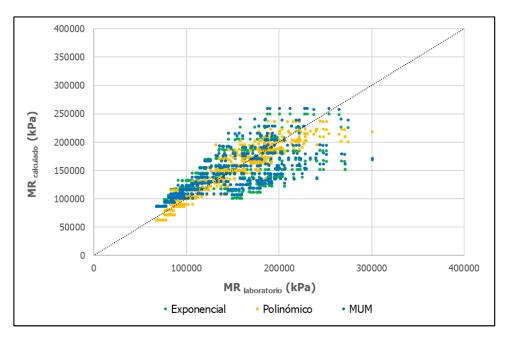


Figura 52. Datos medidos vs los calculados para los modelos, Guácimo

Considerando los parámetros estadísticos y la información presentada en la Figura 52 se concluye que el modelo que mejor se ajusta a la información del suelo de Guácimo es el polinómico. Esto debido a que presenta una menor dispersión de los datos y predice de mejor manera los valores de módulo.

5.1.4 Sede Liberia UCR

La información recolectada de los ensayos de módulo corresponde a los últimos 5 valores de todos los parámetros por secuencia para cada ensayo, exceptuando el preacondicionamiento. Por lo tanto, se cuenta con 80 líneas de datos por espécimen lo que hace que se utilice para el análisis un total de 640 entradas de datos para el suelo de Liberia.

5.1.4.1 <u>Análisis de correlaciones</u>

En el Cuadro 31 se presentan los resultados del análisis de correlación mediante el cual se determina la dependencia de las variables a utilizar.

Cuadro 31. Análisis de la covarianza en las variables utilizadas

	σ₃ (kPa)	σ d (kPa)	Mr (kPa)	Ψ _m (kPa)	θ _{neto} (kPa)	τ _{oct} (kPa)
σ 3 (kPa)	1					
σd (kPa	0,120933	1				
Mr (kPa)	0,167223	-0,25187	1			
Ψm (kPa)	0,000000	-0,00633	0,83847	1		
θ_{neto} (kPa)	0,883329	0,572137	0,019223	-0,00299	1	
τ _{oct} (kPa)	0,120933	1	-0,25187	-0,00633	0,572137	1

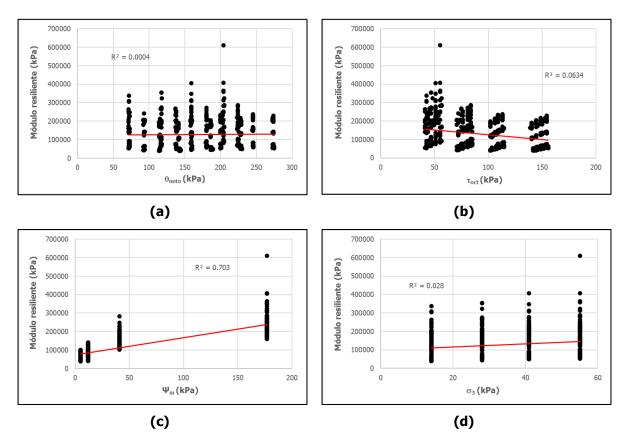


Figura 53. Efecto de las variables analizadas en el MR (a) Invariante de esfuerzos, (b) Esfuerzo cortante octaédrico, (c) Succión matricial y (d) Presión de confinamiento

Con los resultados del Cuadro 31 y la Figura 53 podemos observar que existe una leve dependencia negativa entre el esfuerzo cortante octaédrico y el módulo resiliente, donde se puede esperar una disminución en el módulo producto de un aumento en el esfuerzo (b). Además, como lo establece la teoría, existe una alta dependencia entre el invariante de esfuerzos y los esfuerzos de confinamiento y desviador. El comportamiento del módulo no se ve directamente afectado por variaciones en el invariante de esfuerzos (a) ni en el esfuerzo de confinamiento (d). A diferencia de los otros suelos analizados, se evidencia que el módulo

resiliente es altamente dependiente de los valores de succión matricial. Un aumento en la succión matricial se vería reflejado como un aumento en el módulo (c).

Para la calibración de los modelos se sigue el procedimiento descrito en el apartado 5.1.1, mismo procedimiento utilizado para calibrar los modelos de los suelos de Atenas y Guácimo.

5.1.4.2 <u>Modelo Universal Modificado</u>

Los resultados obtenidos para la calibración del modelo de Cary (2008) se presentan en el Cuadro 32 y en la Figura 54 se muestra el ajuste de los datos para este modelo.

Cuadro 32. Resultados obtenidos de la regresión lineal para el MUM, Sede Liberia UCR

Modelo Universal Modificado	
$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4}$	

Pa	rámetros	Error estándar	Estadístico t	AIC	R ²
k_1	1171,9503	104,828	13,53		
k_2	0,4676	0,0346	-20,28	0.005	0.926
k ₃	-1,274	0,0628	72,60	0,095	0,826
k ₄	1,3361	0,0184	314,12		

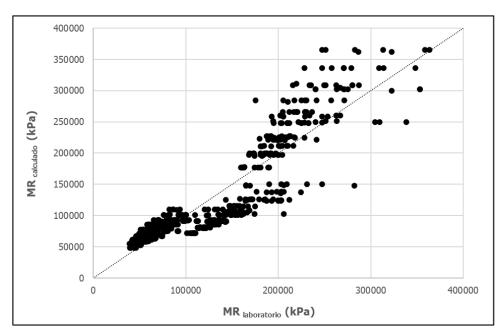


Figura 54. Ajuste de los datos medidos vs los calculados para el MUM, Sede Liberia UCR

Como se observa en la figura anterior, los datos muestran mayor dispersión conforme aumenta el valor de módulo ya que la separación entre los valores calculados y la recta de igualdad es cada vez mayor. Para valores de módulo menores a los 100000 kPa y mayores a los 200000 kPa existe una sobrestimación de la información. Para el intervalo de módulos entre los 100000 kPa y los 200000 kPa el modelo subestima la información.

5.1.4.3 Modelo polinómico

Los resultados obtenidos para la calibración del modelo polinómico de Ávila (2017) con los datos del suelo de Liberia se presentan en el Cuadro 33. Mediante el estadístico t, podemos concluir que todas las variables son significativas en el modelo. Además, se espera un ajuste adecuado de los datos debido a que el R² presenta un valor muy cercano a la unidad.

Cuadro 33. Resultados obtenidos de la regresión lineal para el modelo polinómico, Sede Liberia UCR

Modelo Polinómico					
	Mr =	$k_1 + k_2 \times \psi + k_3 \times \psi$	$k_4 \times \tau_{oct}^2 + k_5 \times \tau_{oct}^2$	$(\tau_{oct})^3 + k_6 \times \theta_{neto}$,
Pa	rámetros	Error estándar	Estadístico t	AIC	R ²
k ₁	58478,98	3913,566	14,94		
k_2	2705,526	45,7806	59,10		
k_3	-0,0526	0,0015	-36,18	22.077	0.000
k_4	-15,5912	1,1360	-13,72	23,077	0,898
\mathbf{k}_{5}	0,0724	0,0061	11,90		
k_6	326,7474	25,5232	12,80		

Tal y como era de esperar, según la información suministrada en el Cuadro 33, el modelo predice adecuadamente la información para el suelo de Liberia. La Figura 55 presenta el ajuste de los datos. El modelo subestima los valores de módulo menores a 5000 kPa y sobrestima los valores por encima de los 300000 kPa. No obstante, la información de módulo obtenida del modelo polinómico calibrado para módulos entre los 5000 kPa y los 300000 kPa se ajusta adecuadamente a la recta de igualdad (x=y).

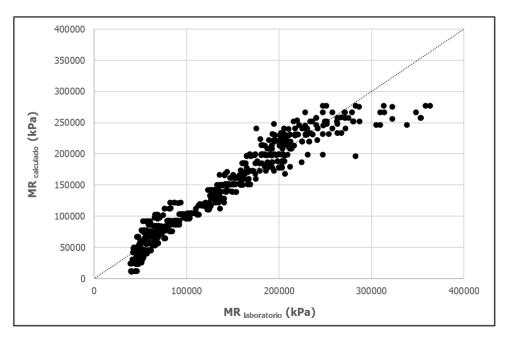


Figura 55. Ajuste de los datos medidos vs los calculados para el modelo polinómico, Sede Liberia UCR

5.1.4.4 Modelo exponencial

Calibrando el modelo exponencial de Ávila (2017) se obtienen los resultados que se presentan en el Cuadro 34 y el ajuste de los datos que se muestra en la Figura 56.

Cuadro 34. Resultados obtenidos de la regresión lineal para el modelo exponencial, Sede Liberia UCR

Modelo Exponencial				
$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a})}$				
Darámetres	Error octándor	Estadístico t	ATC	D2

Par	rámetros	Error estándar	Estadístico t	AIC	R ²
k_1	777,6301	105,427	262,48		
k_2	0,3006	0,0257	11,68	0.400	0.761
k ₃	-0,6469	0,0378	-17,11	0,409	0,761
k_4	0,7080	0,0110	64,21		

Como se observa en la Figura 56, los datos muestran mayor dispersión conforme aumenta el valor de módulo ya que la separación entre los valores calculados y la recta de igualdad es cada vez mayor. Para los valores de módulo que son menor a 100000 kPa y mayor a 200000 kPa existe una sobrestimación de la información. Por el contrario, para el intervalo de módulos entre los 100000 kPa y los 200000 kPa el modelo subestima la información. En la figura anterior podemos observar que el modelo no predice valores por encima de los 350000 kPa.

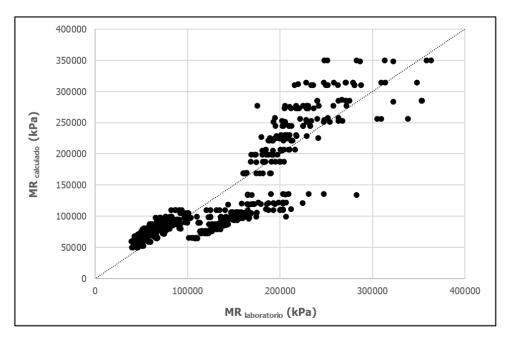


Figura 56. Ajuste de los datos medidos vs los calculados para el modelo exponencial, Sede Liberia UCR

5.1.4.5 Resumen de modelos calibrados

En el Cuadro 35 se presenta un resumen de los resultados obtenidos para la calibración de los diferentes modelos con los datos del suelo de Liberia.

Cuadro 35. Resultados obtenidos para los modelos calibrados, Sede Liberia UCR

	Modelo			t	AIC	R ²
MUM	$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2}$		1171,9503	13,53		
			0,4676	-20,28	0,095	0,826
MOM	$\times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4}$	k 3	-1,274	72,60	0,095	0,620
	$\times \left(\frac{1}{P_a} + 1\right) \times \left(\frac{1}{P_a} + 1\right)$	k 4	1,3361	314,12		
		k_1	58478,98	14,94	23,077	0,898
	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct}^2 + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto}$	k_2	2705,526	59,10		
Dalinámica		k_3	-0,0526	-36,18		
Polinómico		k 4	-15,5912	-13,72		
		k 5	0,0724	11,90		
		k 6	326,7474	12,80		
			777,6301	262,48		
E	Mr	k_2	0,3006	11,68	0,409	0.761
Exponencial	$= k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a})}$	k 3	-0,6469	-17,11		0,761
	1	k 4	0,7080	64,21		

Para realizar una comparación entre los modelos calibrados se utiliza el R² ajustado y el coeficiente de Akaike. De acuerdo con el criterio de predicción de Akaike el modelo universal modificado (AIC menor) es el que se mejor se ajusta a la información. Pero en términos de la correlación lineal ajustada (R² mayor) se determina que el modelo que mejor representa la información analizada es el polinómico.

En la Figura 57 se grafican los ajustes para cada uno de los modelos calibrados. Podemos observar los tres modelos subestiman los valores de módulo mayores a los 300000 kPa. El modelo universal de Cary (2008) y el exponencial de Ávila (2017) presentan el mismo comportamiento a la hora de predecir el módulo. El modelo polinómico es el único que predice adecuadamente los valores de módulo entre los 100000 kPa y los 200000 kPa.

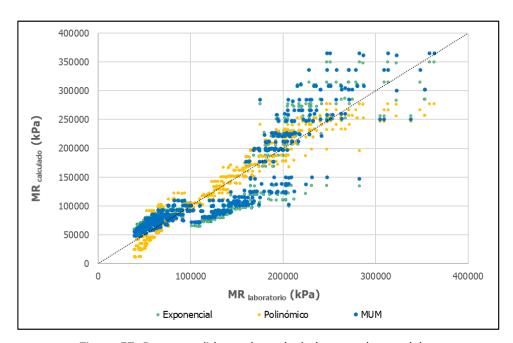


Figura 57. Datos medidos vs los calculados para los modelos

Considerando la calidad de los modelos según el R₂ y el AIC y la información presentada en la figura anterior, se concluye que el modelo que mejor se ajusta a la información del suelo de Liberia y presenta una menor dispersión en los datos, es el polinómico.

5.2 Modelación matemática

Una vez obtenidos los resultados del apartado anterior 5.1 "Calibración de modelos", para cada suelo por separado, se procede a calibrar los mismos modelos para la totalidad de los datos obtenidos (1920), incluyendo los datos obtenidos por Ávila (2017) en su investigación (1120). Por lo tanto, se trabaja con 3040 entradas de datos.

El suelo analizado por Ávila (2017) corresponde a una arena limosa proveniente de Puntarenas, aproximadamente 3km al sur del centro de Paquera sobre la Ruta Nacional 160 (Longitud - 84,940493 y Latitud 9,791437).

En el Cuadro 14 se presenta un resumen de las características físicas de este suelo y en la Figura 58 se muestra la curva granulométrica de este suelo. Ávila (2017) analizó en total 7 puntos diferentes de humedad. Las succiones con las que realizó los ensayos de módulo resiliente van desde los 5 kPa hasta los 400 kPa.

Cuadro 36. Características físicas del suelo Paquera

Límites de Atterberg		Gravedad específica	Densidad seca máxima	Humedad óptima
LL	39%			
LP	26,5%	2,515	1630 kg/m³	18,4%
IP	12			

Fuente: (Ávila, 2017)

100 90 80 70 60 50 40 30 20 10 0 0.01 0.1 1 10 Abertura de la malla (mm)

Figura 58. Curva granulométrica del suelo, Paquera

Fuente: (Ávila, 2017)

Para realizar esta calibración se siguió el mismo procedimiento utilizado en los tres suelos analizados anteriormente. En el Cuadro 37 y la Figura 59 se presentan los resultados obtenidos donde se evidencia que ninguno de los tres modelos (MUM, exponencial y polinómico) se ajustan adecuadamente a la información recolectada.

A pesar de que los modelos son significativos se puede apreciar que estos presentan gran dispersión en los datos. Los modelos presentan variabilidad en los datos de módulo que son menores a 400000 kPa. Para valores mayores de 400000 kPa los módulos son subestimados y no se logran obtener valores mayores a 600000 kPa.

Cuadro 37. Parámetros de modelos considerando todos los suelos

	Modelo	P	arámetros	R ²
	$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3}$	k ₁	1454,281	
NALINA	$P_a \qquad P_a $	k_2	0,3351	0,619
MUM	$\times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4}$	k 3	-1,2146	0,019
		k 4	0,8580	
		k_1	132063,737	
	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct}^2 + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto}$	k_2	482,1413	0,633
Polinómico		k 3	0,0016	
Politioniico		k 4	-22,1258	
		k ₅	0,1130	
		k_6	298,3368	
		k ₁	1095,557	
Exponencial	$(k_{\alpha} \times \frac{\theta_{\text{neto}}}{k_{\alpha}}, \frac{\tau_{\text{oct}}}{k_{\alpha}} \times \frac{\psi}{k_{\alpha}})$	k_2	0,2296	0.560
	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a})}$	k ₃	-0,6560	0,560
		k_4	0,3766	

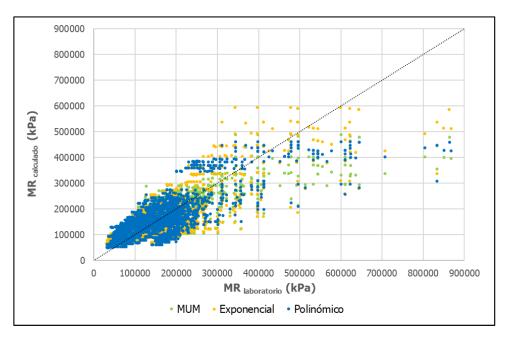


Figura 59. Valores medidos vs calculados para modelos con todos los suelos

Con estos resultados se identifica la necesidad de generar nuevos modelos que se ajusten mejor a la información recolectada. Para esto es necesario plantear modelos con nuevas formas y que incorporen nuevas variables hasta obtener una ecuación que prediga adecuadamente el módulo de los suelos.

Interpretando los resultados obtenidos para los suelos MH (Cruce Atenas y Guácimo), el suelo ML (Sede Liberia UCR) y el suelo SM (Paquera (Ávila,2017)), se observa que conforme disminuye la plasticidad del suelo, mejor se ajustan los datos a los modelos propuestos por Ávila (2017). Los suelos de Liberia y Paquera se ajustan mejor a los modelos (IP de 10 y 12, respectivamente) que los suelos de Guácimo y Atenas (IP de 18 y 27, respectivamente)

Es por esto que se deciden implementar variables que consideren el tipo de grano del suelo y la plasticidad. El porcentaje pasando la malla No.200, el coeficiente de uniformidad (C_u) y el coeficiente de curvatura (C_c), son las variables seleccionadas para considerar la granulometría del suelo. El índice de plasticidad (IP) para considerar la plasticidad del suelo y, por último, el coeficiente *wIP* propuesto por Zapata et al (2005, citado por Chon kan, 2017) que es el producto del porcentaje pasando la malla No.200 y el IP.

Para generar los nuevos modelos se tomaron como base los modelos ya estudiados (universal, polinómico y exponencial). A estos modelos se les incorporaron las diferentes variables seleccionadas, en diferentes formas, a partir de los cuales se realizaron varias iteraciones

descartando aquellas variables que arrojaban menor representatividad o peso estadístico para la regresión.

Una vez que se obtenía un modelo en el cual todas sus variables eran significativas se procedía a interpretar el ajuste de los datos. Para aquellos modelos en los que el número de parámetros era mayor a 7 (límite seleccionado con el fin de obtener un modelo práctico y de fácil manejo) se realizaba una reducción del modelo para determinar su capacidad de predicción, procedimiento que se detenía una vez que el modelo dejaba de ser significativo o reducía considerablemente su R².

En total se elaboraron 5 variaciones del modelo universal, 7 variaciones del modelo polinómico y 7 variaciones del modelo exponencial, para un total de 19 modelos calibrados. En el apéndice IV se presenta un cuadro con los diferentes modelos considerados donde se incluye el valor de R² ajustado y una breve descripción del ajuste de los datos. Luego de varias iteraciones, se concluye que ninguno de los modelos propuestos se ajusta adecuadamente a los datos recolectados.

Debido a que no se logró obtener un modelo que prediga adecuadamente el valor de módulo resiliente a partir de la totalidad de los datos recolectados, se decide repetir el procedimiento separando los datos según la plasticidad de los suelos.

Como se mencionó anteriormente, de los resultados obtenidos se observó que conforme disminuye la plasticidad del suelo mejor se ajustan los diferentes modelos. Por esta razón, se propondrán diferentes modelos para suelos con IP≤15 y suelos con IP>15. Para la presente investigación se considera un IP=15 como punto límite para la clasificación propuesta. No obstante, este valor podría variar una vez que se cuente con una base de suelos más completa.

La distribución de los datos recolectados según la clasificación por plasticidad se presenta en el Cuadro 38.

Cuadro 38. Clasificación de suelos por plasticidad

Clasificación	Suelo	IP	Cantidad de datos	Total de datos
IP≤15	Sede Liberia UCR	10	640	1760
	Paquera	12	1120	1760
ID. 1F	Cruce Atenas	27	720	1200
IP>15	Guácimo	18	560	1280

En los siguientes apartados se presentan los resultados obtenidos para las clasificaciones establecidas. El procedimiento seguido para obtener los diferentes modelos es el mismo que ha sido descrito en esta sección para la totalidad de los datos.

5.2.1 Modelos para suelos con IP \leq 15

En total se calibraron 10 modelos para los suelos con índice de plasticidad menor a 15. De las diferentes variables adicionales consideradas (pasando malla No.200, Cc, Cu, IP y wIP), la variable que presentó un aporte significativo en los ajustes de los modelos fue el índice de plasticidad.

Los resultados obtenidos se sintetizan en el apéndice V, donde se presentan los diferentes modelos, así como su respectivo valor de R² ajustado y una breve descripción del ajuste de los datos. En los siguientes apartados se presentará el análisis de correlación de las variables incluyendo el índice de plasticidad y los resultados obtenidos para los nuevos modelos propuestos.

5.2.1.1 Análisis de correlación

En el Cuadro 28 se presentan los resultados del análisis de correlación mediante el cual se determina la dependencia de las variables a utilizar.

 $\sigma_d(kPa)$ Mr (kPa) σ₃ (kPa) Ψ_m (kPa) θ_{neto} (kPa) $\tau_{oct}(kPa)$ ΙP σ₃ (kPa) 1 σ_d (kPa 0,050016 1 -0,31876 Mr (kPa) 0,087618 1 -0,00726 0,800359 Ψ_m (kPa) -0,03642 1 0,875458 0,526476 θ_{neto} (kPa) -0,07966 -0,02381 1 $\tau_{\text{oct}}(kPa)$ 0,050016 -0,31876 -0,03642 0,526476 1 1 -0,00225 -0,13416 0,131437 0,282129 -0,06684 -0,13416 1 ΙP

Cuadro 39. Análisis de la covarianza en las variables utilizadas

Con los resultados del Cuadro 39 y la Figura 60 podemos observar que existe una dependencia negativa entre el esfuerzo cortante octaédrico y el módulo resiliente, donde se espera una disminución en el módulo producto de un aumento en este esfuerzo (b). Además, como lo establece la teoría, existe una alta dependencia entre el invariante de esfuerzos y los esfuerzos de confinamiento y desviador. El comportamiento del módulo no se ve directamente afectado por variaciones en el invariante de esfuerzos (a) ni en el esfuerzo de confinamiento (d). Se

evidencia que el módulo resiliente es altamente dependiente de la succión matricial. Un aumento en la succión matricial se ve reflejado en un aumento en el módulo (c). El esfuerzo desviador, el módulo resiliente y el esfuerzo cortante octaédrico tienen una leve dependencia con el índice de plasticidad (e), la succión matricial depende en mayor magnitud de esta variable.

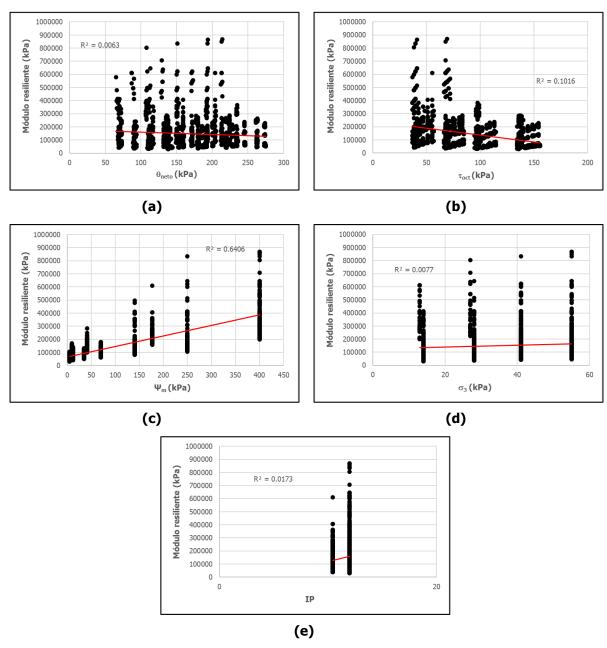


Figura 60. Efecto de las variables analizadas en el MR (a) Invariante de esfuerzos, (b) Esfuerzo cortante octaédrico, (c) Succión matricial, (d) Presión de confinamiento, y (e) índice de plasticidad

5.2.1.2 Modelo Universal Modificado Ajustado con IP

De acuerdo con el análisis de correlación de las variables se ajusta el modelo universal de Cary (2008) incluyendo la variable del índice de plasticidad. Siguiendo la forma original del MUM se propone un nuevo modelo tal y como se describe en la ecuación 18.

$$\begin{split} Mr &= k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \\ &\times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4} \times \left(\frac{IP}{P_a} + 1\right)^{k_5} \end{split} \tag{Ecuación 18}$$

Donde,

 k_1 , k_2 , k_3 , k_4 , k_5 : Parámetros de la regresión

Pa: Presión atmosférica (101 kPa)

En el Cuadro 40 se presentan los resultados de la regresión para el modelo propuesto donde podemos observar que todas las variables son significativas para el modelo.

Cuadro 40. Resultados obtenidos de la regresión lineal para el MUM ajustado con IP

Pa	arámetros	Error estándar	Estadístico t	AIC	R ²
k ₁	9650,439	111,835	135,21		
k_2	0,3579	0,0206	17,41		
k ₃	-1,4905	0,0351	-42,43	0,072	0,860
k_4	1,1414	0,0117	97,55		
k_5	-18,7188	0,9154	-20,25		

En la Figura 61 se muestra el ajuste de los datos donde podemos observar que el modelo propuesto predice adecuadamente los valores de módulo menores a los 300000 kPa. Para los valores de módulo mayores a los 300000 kPa se presenta una mayor dispersión en los datos y el modelo tiende a subestimar estos valores.

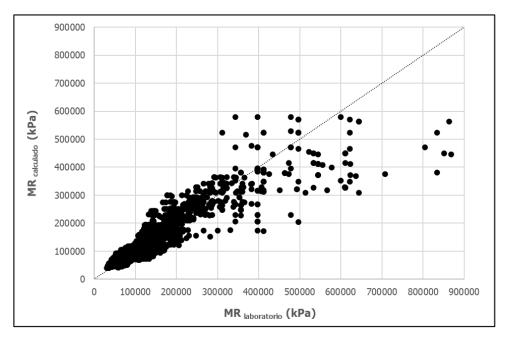


Figura 61. Ajuste de los datos medidos vs los calculados para el MUM ajustado con IP

5.2.1.3 Modelo exponencial ajustado con IP

Se repite el mismo procedimiento para el modelo exponencial propuesto por Ávila (2017), donde se incluye la variable del índice de plasticidad en la componente exponencial del modelo planteado (ver ecuación 19).

$$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a} + k_5 \times \frac{IP}{P_a})}$$
 (Ecuación 19)

Donde,

k₁, k₂, k₃, k₄, k₅: Parámetros de la regresión

Pa: Presión atmosférica (101 kPa)

En el Cuadro 41Cuadro 40 se presentan los resultados de la regresión con errores estándares robustos donde se observa que todas las variables son significativas para el nuevo modelo propuesto.

Cuadro 41. Resultados obtenidos de la regresión lineal para el modelo exponencial ajustado con IP

Pa	rámetros	Error estándar	Estadístico t	AIC	R ²
k ₁	6426,748	113,672	113,22		
k_2	0,2418	0,0152	15,94		
k 3	-0,7874	0,0219	-35,99	0,349	0,815
k 4	0,4760	0,0056	85,55		
k 5	-16,8598	0,9884	-17,06		

Al igual que para el modelo MUM ajustado se observa, en la Figura 62, que el modelo predice satisfactoriamente los valores de módulo menores a 300000 kPa. A medida que aumenta el módulo así lo hace, de igual manera, la dispersión de los datos. Para el rango entre los 300000 kPa y los 700000 kPa el modelo tiende a sobrestimar y a subestimar los valores de módulo. Para valores mayores a los 700000 kPa los módulos son subestimados.



Figura 62. Ajuste de los datos medidos vs los calculados para el modelo exponencial ajustado con IP

5.2.2 Modelos para suelos con IP > 15

En total se calibraron 11 modelos para los suelos con índice de plasticidad mayor a 15. De las diferentes variables adicionales consideradas (pasando malla No.200, Cc, Cu, IP y wIP), la única variable que presentó un aporte significativo en los ajustes de los modelos, al igual que para la clasificación anterior, fue el índice de plasticidad.

Los resultados obtenidos se sintetizan en el apéndice VI, donde se presentan los diferentes modelos calibrados, así como su respectivo valor de R² ajustado y una breve descripción del ajuste de los datos. En los siguientes apartados se presentará el análisis de correlación de las variables incluyendo el índice de plasticidad y los resultados obtenidos para los nuevos modelos propuestos.

5.2.2.1 Análisis de correlación

Los resultados del análisis de correlación para determinar la dependencia entre las variables se presentan en la Cuadro 42.

Cuadro 42. Análisis de la covarianza en las variables utilizadas

	(kPa)	σd (kPa)	Mr (kPa)	Ψ _m (kPa)	θ _{neto} (kPa)	τοct (kPa)	IP
σ 3 (kPa)	1						
σd (kPa	0,12260	1					
Mr (kPa)	0,34490	-0,30534	1				
Ψm (kPa)	0,00000	-0,00308	0,25548	1			
θ_{neto} (kPa)	0,88467	0,57116	0,14182	-0,00145	1		
τ_{oct} (kPa)	0,12260	1,00000	-0,30534	-0,00308	0,57116	1	
IP	0,00000	-0,00158	0,15047	0,11760	-0,00074	-0,00158	1

Para el rango de datos analizados existe una fuerte dependencia entre el invariante de esfuerzos y los esfuerzos de confinamiento y desviador, así como con el esfuerzo cortante octaédrico, como es de esperarse. El módulo resiliente presenta dependencia con el esfuerzo cortante octaédrico y el esfuerzo de confinamiento. Por otra parte, la succión matricial presenta una leve dependencia con el módulo resiliente.

En la Figura 63 podemos observar que existe un pequeño aumento en el módulo resiliente conforme aumenta el esfuerzo de confinamiento (d). Conforme aumenta el esfuerzo cortante octaédrico (b) se genera una leve disminución en el valor del módulo. Se observa un leve aumento en el módulo conforme aumenta el invariante de esfuerzos (a), la succión matricial (c) y el índice de plasticidad (e).

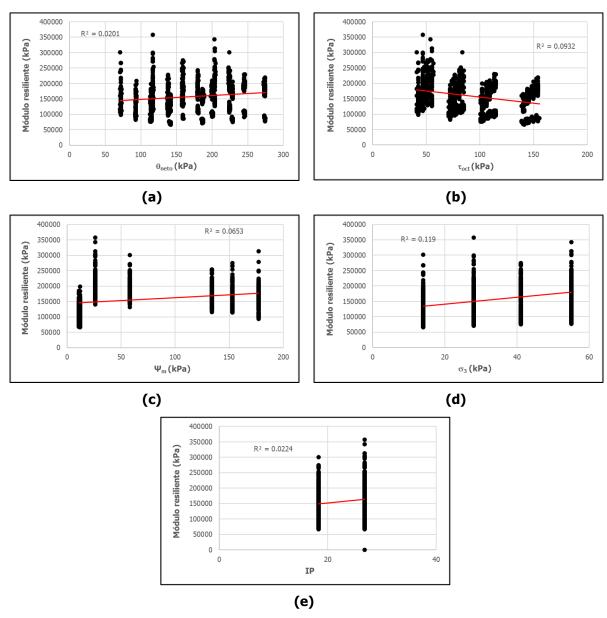


Figura 63. Efecto de las variables analizadas en el MR (a) Invariante de esfuerzos, (b) Esfuerzo cortante octaédrico, (c) Succión matricial, (d) Presión de confinamiento, y (e) índice de plasticidad

5.2.2.2 <u>Modelo polinómico ajustado</u>

Para plantear el modelo polinómico ajustado se siguió el procedimiento establecido por Ávila (2017) en el cual se inicia con un conjunto de variables y estas se van descartando según la representatividad que tengan para el modelo. Se realizaron diferentes iteraciones hasta obtener el modelo propuesto en la ecuación 20 (apéndice VI). En este modelo se consideran únicamente las variables iniciales las cuales corresponden a la succión, el invariante de esfuerzos y el esfuerzo cortante octaédrico.

$$Mr = k_1 + k_2 \times \psi + k_3 \times \theta_{neto} + k_4 \times \tau_{oct} + k_5 \times \psi^2 + k_6 \times \psi^3$$
 (Ecuación 20)

Los resultados de la regresión se presentan en el Cuadro 43 donde se observa que todas las variables son significativas en el modelo.

Cuadro 43. Resultados obtenidos de la regresión p	para el modelo polinómico ajustado
---	------------------------------------

Par	ámetros	Error estándar	Estadístico t	AIC	R ²
k_1	65950,89	3041,407	21,68		
k_2	5233,475	157,8533	33,15		
k 3	412,820	17,9433	23,01	22 206	0.674
k_4	-758,803	26,1435	-29,02	23,306	0,674
k 5	-53,412	1,9812	-26,96		
k_6	0,152	0,0068	22,35		

La Figura 64 presenta el ajuste de los datos. A pesar de que la regresión tiene un valor de R² de 0,674, se observa que los módulos se predicen de forma adecuada con el modelo, principalmente para los valores de módulo menores a 250000 kPa. Para los módulos mayores a los 250000 kPa el modelo tiende a subestimar los datos.

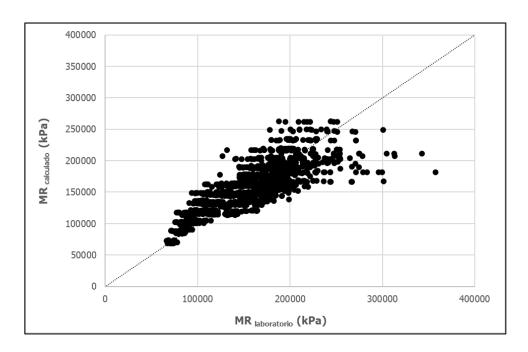


Figura 64. Ajuste de los datos medidos vs los calculados para el modelo polinómico ajustado

5.2.2.3 Modelo polinómico ajustado con IP

Una vez obtenido el modelo polinómico ajustado se incorpora la variable del índice de plasticidad con el fin de aumentar la representatividad del modelo (ecuación 21).

$$Mr = k_1 + k_2 \times \psi + k_3 \times \theta_{neto} + k_4 \times \tau_{oct} + k_5 \times \psi^2 + k_6 \times \psi^3 + k_7 \times IP$$
 (Ecuación 21)

En el Cuadro 44Cuadro 40 se presentan los resultados de la regresión con errores estándares robustos donde se observa que todas las variables son significativas para el modelo propuesto.

O 1 44	D 11 1			. /			1. / .		
Cuadro 44.	Resultados	obtenidos	de la re	earesion i	nara el	modelo	nolinomico	allistado (กก เห
Cuuui O I II	1 Coultago	Obttiliaos	ac ia i		bara ci	IIIOGCIO		ujustauo i	

Pa	rámetros	Error estándar	Estadístico t	AIC	R ²
k1	105123,5	7194,204	14,61		
k_2	5232,667	156,056	33,53		
k 3	415,307	17,6751	23,50		
k 4	-1691,931	147,5712	-11,47	23,269	0,686
k 5	-53,397	1,9480	-27,41		
k_6	0,1524	0,0067	22,84		
k ₇	4,731	0,7063	6,70		

Al incorporar la nueva variable (IP) se produce un aumento en el R² de la regresión, lo que se traduce en una mejor predicción de los valores. El ajuste de los datos se muestra en la Figura 65. Para los valores de módulo menores a los 250000 kPa el modelo se ajusta adecuadamente, los valores mayores a los 250000 kPa tienden a ser subestimados.

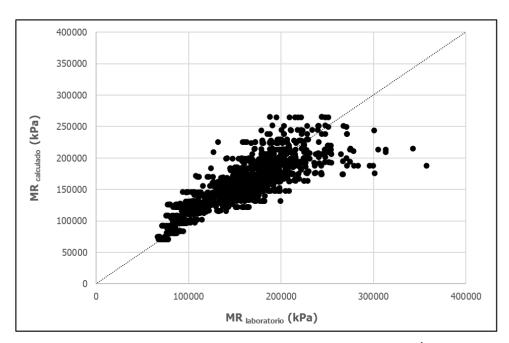


Figura 65. Ajuste de los datos medidos vs los calculados para el modelo polinómico ajustado con IP

5.2.3 Resumen de modelos

A continuación, se presenta un resumen de los modelos que mejor se ajustan a los datos registrados para los suelos con IP \leq 15 (MUM y exponencial ajustados) y para los suelos con IP > 15 (polinómico ajustado).

5.2.3.1 Suelos con IP \leq 15

En el Cuadro 45 se presenta un resumen de los resultados obtenidos para los diferentes modelos calibrados con los datos de los suelos que presentan un IP menor o igual a 15.

Cuadro 45. Resultados obtenidos para los modelos para suelos con IP ≤ 15

	Modelo	Pa	arámetros	t	AIC	R ²
	Mr	k_1	9650,439	135,21		
N. 41 1 N. 4	$= k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3}$		0,3579	17,41		
MUM con IP	$\times \left(\frac{\tau_{oct}}{T_{oct}} + 1\right)^{k_3}$	k ₃	-1,4905	-42,43	0,072	0,860
	(P_a) $((100 - 10) \qquad {}^{k_4} \qquad (IP) \qquad {}^{k_5}$	k 4	1,1414	97,55		
	$\times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4} \times \left(\frac{IP}{P_a} + 1\right)^{k_5}$		-18,7188	-20,25		
		k_1	6426,748	113,22		
	Mr	k_2	0,2418	15,94		
Exponencial con IP	$= k_1 \times P_a$ $\theta_{noto} = \tau_{oct} \cdot \psi \cdot IP$	k₃	-0,7874	-35,99	0,349	0,815
	$\times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a} + k_5 \times \frac{IP}{P_a})}$	k 4	0,4760	85,55		
		k_5	-16,8598	-17,06		

Para realizar una comparación entre la calidad de los modelos propuestos se utiliza el R² ajustado y el coeficiente de Akaike. Se determina que el modelo que mejor representa la información analizada es el MUM con IP ya que tiene un mayor valor de R² ajustado y un menor valor de AIC.

En la Figura 66 podemos observar el ajuste de ambos modelos. Para valores de módulo menores a los 300000 kPa ambos modelos logran una predicción adecuada de la información. Además, existe una dispersión importante para los módulos mayores a los 300000 kPa, en ambos modelos, la diferencia radica en que el exponencial con IP subestima y sobrestima los valores por igual y el MUM con IP tiende a subestimar los valores en su mayoría. Cuando los valores superan los 700000 kPa ambos modelos subestiman el Mr.



Figura 66. Datos medidos vs los calculados de modelos para suelos con IP ≤ 15

5.2.3.2 <u>Suelos con IP > 15</u>

En el Cuadro 46 se presenta un resumen de los resultados obtenidos para los diferentes modelos calibrados con los datos de los suelos que tienen un IP mayor a 15.

Cuadro 46. Resultados obtenidos para los modelos para suelos con IP > 15

	Modelo	P	arámetros	t	AIC	R ²
		k_1	65950,89	21,68		
	$Mr = k_1 + k_2 \times \psi + k_3 \times \theta_{neto}$	k_2	5233,475	33,15		0,674
Polinómico ajustado	$+ k_4 \times \tau_{oct}$	k ₃	412,820	23,01	22.206	
	$+ k_5 \times \psi^2$	k 4	-758,803	-29,02	23,306	
	$+ k_6 \times \psi^3$	k_5	-53,412	-26,96		
		k_6	0,152	22,35		
		k_1	105123,5	14,61		
		k_2	5232,667	33,53		
Polinómico	$Mr = k_1 + k_2 \times \psi + k_3 \times \theta_{neto}$	k ₃	415,307	23,50		
ajustado	$+ k_4 imes au_{oct} \ + k_5 imes \psi^2$	k_4	-1691,931	-11,47	23,269	0,686
con IP	$+k_6 \times \psi^3 + k_7 \times IP$	k 5	-53,397	-27,41		
	,	k 6	0,1524	22,84		
		k_7	4,731	6,70		

Para realizar una comparación entre los modelos propuestos se utiliza el R² ajustado y el coeficiente de Akaike. De acuerdo con ambos criterios se determina que el modelo que mejor representa la información analizada es el polinómico ajustado con IP ya que tiene un mayor valor de R² ajustado y un menor valor de AIC.

No obstante, se observa en la Figura 67 que ambos modelos predicen de forma adecuada los valores de módulo menores a los 250000 kPa. Podemos observar que al incluir la variable IP en el segundo modelo este tiende a disminuir las distancias a la línea de mejor ajuste (x=y).

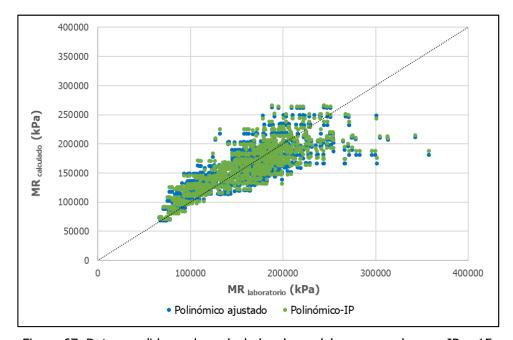


Figura 67. Datos medidos vs los calculados de modelos para suelos con IP > 15

6 CONCLUSIONES Y RECOMENDACIONES

6.1 Resumen de resultados y conclusiones

De los resultados obtenidos en la investigación se concluyen los siguientes aspectos:

- A partir de la información recolectada y siguiendo las recomendaciones establecidas por Ávila (2017) en su investigación, se estudiaron suelos provenientes de Liberia, Atenas y Guácimo. Estos se clasifican como ML y MH, según el sistema de clasificación SUCS, y representan el 80% de los suelos del país (Ávila & Araya, 2014).
- Una vez realizada la caracterización de los materiales se logró obtener la curva Característica Suelo-Agua de los suelos. Para esto se utilizó el modelo propuesto por Chon kan (2017) para suelos con contenido limoso. Haciendo uso de esta metodología se logra asociar el contenido de agua volumétrico del suelo con las succiones mediante un proceso rápido y eficiente.
- Se ensayaron cuatro puntos de saturación para el suelo de Atenas entre el 75% y el 95%. El suelo de Guácimo se trabajó con tres puntos entre el 70% y el 91% de saturación debido a la escasez de material. Por otro lado, el suelo de la Sede Liberia UCR se ensayó con porcentajes de saturación entre el 72% y el 95%. Datos que fueron seleccionados del mapa de saturación y se restringieron a la condición de que las succiones asociadas no superen la presión máxima de confinamiento, permitida por el equipo, de 250 kPa.
- Se utilizan los mapas de saturaciones elaborados por el LanammeUCR (2021) con el fin de que los valores de succión seleccionados para la ejecución de los ensayos de Mr representen, de la mejor manera posible, las condiciones a las que, por lo general, el suelo se encuentra sometido. Estos mapas representan la saturación promedio de los suelos, clasificados por regiones, para la época seca y la época lluviosa.
- Siguiendo las recomendaciones planteadas por Ávila (2017), se sometieron las pastillas (molde de 70 mm) a ensayos de compactación en los que se varió la cantidad de golpes por capa, con el fin de determinar el número requerido para alcanzar la densidad seca máxima obtenida del ensayo proctor estándar (molde de 100 mm). Las densidades

alcanzadas en los especímenes de ensayo de 70 mm presentan valores muy cercanos a los esperados, con diferencias no mayores al 3% con respecto a la densidad requerida.

- Mediante el procedimiento realizado para el ensayo de módulo se logró cumplir con los objetivos ya que se logró la correcta variación de las humedades y comportamientos muy semejantes entre especímenes a las mismas humedades. Se concluye que el procedimiento de acondicionamiento es indispensable para lograr los resultados esperados. Esto con el fin de evitar una distribución irregular humedad en la pastilla que pueda generar un ajuste inadecuado de los datos.
- De los resultados obtenidos para módulo resiliente, para el suelo ML (Liberia) se logra apreciar que existe un aumento en la resistencia del material producto de disminuciones en el contenido de humedad.
- Para los suelos MH (Atenas y Guácimo) no evidencia una alta dependencia entre el valor del Mr y la succión. Esto debido a que, al alcanzar valores elevados de succión los módulos tienden a disminuir con respecto a los módulos obtenidos para menores valores de succión. Según Lu & Likos (2006) y Baltodano (2006) existe un fenómeno denominado "doble pico", donde las resistencias bajan a medida que aumenta el grado de saturación produciéndose un incremento cerca del régimen capilar. Este fenómeno es más común en suelos granulares, no obstante, estos autores han concluido que también se presenta en suelos finos.
- Para el suelo del Cruce de Atenas se puede observar que las calibraciones obtenidas para los modelos MUM, exponencial y polinómico no generan un ajuste adecuado para los datos, con valores de R² no mayores a 0,4. Los valores predichos presentan gran dispersión alrededor de la línea de mejor ajuste.
- La calibración del modelo polinómico propuesto por Ávila (2017) predice adecuadamente los datos de los suelos de Guácimo y Liberia, con valores de R² cercanos a 0,9. Por su parte, los modelos exponencial y MUM generan resultados con una gran dispersión de los datos mayores a los 100000 kPa para ambos suelos.

- Con el fin de seguir la línea de investigación propuesta por Ávila (2017) se genera una base de datos donde se incluyen los tres suelos del presente estudio (MH y ML) y el suelo analizado por Ávila (SM). Se procede a calibrar los tres modelos para los 3040 datos recolectados, donde se puede observar que estos no se ajustan adecuadamente a la información. Existe una gran dispersión (sobrestimación y subestimación) de los datos a lo largo de la línea de mejor ajuste.
- Una vez identificado que los modelos calibrados no logran predecir adecuadamente los
 datos, se ajustaron los modelos con la inclusión de parámetros adicionales para intentar
 capturar la variabilidad que se genera al tener diferentes tipos de suelos. Estas variables
 son: el índice de plasticidad (IP), el wIP, el coeficiente de uniformidad (Cu), el
 coeficiente de curvatura (Cc) y el porcentaje pasando la malla No.200.
- Se calibraron un total de 19 modelos diferentes, con valores de R² ajustado menores a 0,65. Se concluye que, ninguna de las expresiones propuestas logra predecir adecuadamente los valores de módulo resiliente para la totalidad de los suelos considerados (4 suelos).
- A través del análisis de los resultados podemos observar la particularidad de que conforme disminuye el índice de plasticidad de los suelos, los modelos se ajustan mejor a los datos. Por lo tanto, se hace una separación de la información según el IP de los suelos, con el fin de proponer modelos matemáticos capaces de predecir adecuadamente los valores de Mr.
- En la primera clasificación se incluyen los suelos que cuentan con un IP ≤ 15 (Liberia y Paquera, 1760 datos). La segunda clasificación corresponde a los suelos que tienen una plasticidad mayor a 15 (Atenas y Guácimo, 1280 datos).
- Se plantearon un total de 10 modelos para los suelos con IP≤15 y un total de 11 modelos para los suelos con IP>15, de los cuales se obtienen 4 modelos que logran predecir satisfactoriamente los valores de Mr.
- Para los suelos con índice de plasticidad menor a 15 los modelos fueron calibrados para rangos de Mr entre 0 kPa y 800000 kPa. Se propusieron los modelos MUM ajustado y

exponencial ajustado; a los cuales se les incorporó la variable "IP". Estos modelos son capaces de predecir adecuadamente los valores de Mr menores a 300000 kPa, y con alguna dispersión los valores de módulo mayores a 300000 kPa; con valores de R² superiores a 0,8.

- Las ecuaciones polinómicas ajustadas, que pueden o no considerar el IP, predicen adecuadamente los valores de módulo menores a 250000 kPa para los suelos que presentan un índice de plasticidad mayor a 15. Estos modelos fueron calibrados para rangos de Mr entre 0 kPa y 350000 kPa.
- Los diferentes modelos alcanzan un valor máximo de resistencia en sus predicciones. Para la clasificación de suelos con IP ≤ 15 el modelo universal ajustado tiene como valor límite de Mr los 600000 kPa, el modelo exponencial predice hasta los 700000 kPa. Ambos modelos propuestos para los suelos con IP>15 alcanzan este valor límite hasta los 260000 kPa, aproximadamente. Por lo tanto, cualquier valor de módulo que supere estos límites será subestimado por los modelos.
- Se presenta un sesgo en los diferentes modelos para valores de módulo elevados. Se destaca que no más del 8,5% de los datos se encuentran en este rango. Estos sesgos se presentan en los primeros ciclos de carga donde se puede presentar un reacomodo de partículas. Además, en estos ciclos de carga se encuentran sometidos a diferentes valores de esfuerzo de confinamiento pero a un único valor de esfuerzo desviador bajo.
- Para mejorar la capacidad de predicción de los modelos propuestos y corroborar la validez de la clasificación propuesta, es necesario realizar más ensayos en materiales con distintas características.

6.2 Recomendaciones

A partir de los resultados obtenidos en esta investigación, se plantean las siguientes recomendaciones con el fin de mejorar los resultados obtenidos:

 Realizar mediciones de humedad en diferentes puntos de país, con las que se pueda robustecer la base de datos del mapa de saturación. Para así representar de la mejor manera posible, las condiciones de humedad a las que se encuentra sometido el suelo a lo largo de los años.

- Es recomendable seguir determinando los rangos de succión para la implementación del ensayo de Mr mediante el mapa de saturación propuesto por el LanammeUCR (2021). Esto, con el fin de tomar en consideración el rango real de succiones que experimentan los suelos del país, lo que se vería reflejado en una disminución en la cantidad de ensayos.
- Tomar en cuenta las limitaciones del equipo, dado que no es posible obtener resultados de módulo asociados a succiones mayores a los 195 kPa para suelos de grano fino, utilizando aire como medio confinante (presión de confinamiento máxima de 250 kPa). Si debido a las condiciones del suelo este debe ser sometido a succiones mayores, se recomienda utilizar agua como medio confinante con la cual se puede trabajar con succiones de hasta 450 kPa.
- Se recomienda realizar con extremo cuidado el procedimiento de acondicionamiento de los especímenes para evitar la pérdida de material. El control de humedad se realiza por peso por lo que, una inadecuada manipulación de los especímenes puede generar resultados incorrectos. Además, es recomendable mantener el espécimen dentro de la membrana látex todo el tiempo con el fin de evitar cambios bruscos de humedad que puedan dañar la muestra, especialmente cuando se realiza el procedimiento de secado.
- Los modelos obtenidos se limitan a una aplicación en el caso de que se trate de los suelos ensayados. Por tanto, como siguiente paso se recomienda robustecer las bases de datos con las que se generaron los modelos, incluyendo diferentes tipos de suelo que tienen incidencia en proyectos carreteros, para poder determinar mejor su comportamiento.
- Se recomienda considerar variables tales como el contenido de arcilla en los modelos con el fin de capturar otras propiedades de los suelos.
- Los suelos con mayor plasticidad presentan una menor dependencia entre la succión y
 el valor de módulo resiliente. Se recomienda realizar una investigación en la que se

estudie el comportamiento de "doble pico" (Likos, 2006) con el fin de conocer mejor la fluctuación del módulo para un rango determinado de succiones.

- Podemos observar que los diferentes modelos propuestos tienden a alcanzar un valor máximo de resistencia con los datos analizados. Por lo tanto, se recomienda realizar una investigación en la que se analice el comportamiento de los suelos que requieran ser sometidos a condiciones de resistencia que exceden una cierta capacidad.
- Para utilizar los modelos propuestos en la presente investigación se recomienda realizar una adecuada caracterización de los materiales, con el fin de obtener valores representativos.
- Finalmente, se recomienda realizar una investigación donde se analice el comportamiento del módulo en las primeras secuencias de carga y así se pueda determinar con certeza cuáles son esos factores que afectan directamente el comportamiento observado, donde los mayores valores de módulo tienden a ser subestimados por los modelos.

REFERENCIAS BIBLIOGRÁFICAS

- Alfaro, M. (2008). *Geotecnia en suelos no saturados*. Revista Académica Colombiana. 32 (125), 471-481. Recuperado de: https://sistemamid.com/panel/uploads/biblioteca/2015-03-27_03-33-50118020.pdf
- American Association of State Highway and Transportation Officials. (1993). *Guía de Diseño AASHTO 93.* Estados Unidos.
- Austroads. (2012). *Guide to Pavement Technology Part 2: Pavement Structural Design*. Recuperado de: https://www.onlinepublications.austroads.com.au/items/AGPT02-12
- Ávila, T. & Araya, Y. (2014). *Clasificación Físico-Química de suelos de Costa Rica: LM-PI-UMP-046-R1.* Unidad de Materiales y Pavimentos, Programa de Infraestructura del Transporte, Laboratorio Nacional de Materiales y Modelos Estructurales, Universidad de Costa Rica. San José, Costa Rica.
- Ávila, T. (2017). Efecto del contenido de agua en el módulo resiliente de las subrasantes. Tesis de posgrado en Ingeniería Civil para obtener el título de Maestría Académica en Ingeniería del Transporte y Vías. Universidad de Costa Rica. San Pedro, San José. Costa Rica.
- Ávila, T. (2021). Primer informe: *Análisis mecánico de subrasantes en distintas condiciones de humedad*: LM-PI-UIIT-109-P. Unidad de Investigación de Infraestructura y Transporte, Programa de Infraestructura del Transporte, Laboratorio Nacional de Materiales y Modelos Estructurales de la Universidad de Costa Rica, Universidad de Costa Rica. San José, Costa Rica.
- Baltodano, R. (2006). *Tensile strenght, shear strengh, and effective stress for unsaturated sand*. Tesis Doctoral. Escuela de Ingeniería Civil y Ambiental, Universidad de Missouri-Columbia.
- Baltodano, R. (2019). *Apuntes Mecánica de Suelos Aplicada: folleto complementario a curso de nivel de grado.* 1º Edición. Instituto Tecnológico de Costa Rica: Cartago, Costa Rica.

- Barrera, M. & Garnica, P. (2002). *Introducción a la mecánica de suelos no saturados en vías terrestres*". Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Transporte. Publicación Técnica N.198. México.
- Cary, C., & Zapata, C. (2010). Enhanced Model for Resilient Response of Soils Resulting from Seasonal Changes as Implemented in Mechanistic-Empirical Pavement Design Guide.

 Transportation Research Record: Journal of the Transportation Research Board. Estados Unidos.
- Cary, C., & Zapata, C. (2011). *Modelo de predicción del módulo resiliente para suelos no saturados*. Segundo Encuentro Latino de Profesores de Geotecnia. Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil. Vol. 12 (1).
- Chaves, S. & Camacho, E. (2017). *Comparación de valores de módulo resiliente en subrasante obtenidos por ensayos de campo y laboratorio*. Tesis de grado para obtener el título de licenciatura en Ingeniería Civil. Universidad de Costa Rica. San José, Costa Rica.
- Chon kan, P. & Ávila, T. (2017). Modelado de curvas características suelo-agua para carreteras en Costa Rica. Tesis de grado para obtener el título de licenciatura en Ingeniería Civil. Universidad de Costa Rica. San Pedro, San José. Costa Rica.
- Cordero, M. (2018). *Notas de clase: Laboratorio Mecánica de Suelos 1 IC-0703*. Universidad de Costa Rica.
- Crespo, C. (2004). *Mecánica de suelos y cimentaciones*. México: Limusa.
- Das, B. (2014). *Fundamentos de ingeniería Geotécnica*. (4ta ed.). (S. Cervantes Gonzáles, Ed.). México: Cengage Learning.
- Duque, G. & Escobar, C. (2016). *Geomecánica: Relaciones gravimétricas y volumétricas del suelo*. Universidad Nacional de Colombi. Bogotá, Colombia.
- Garnica, P., Gómez, J. & Pérez, N. (2000). *Módulos de resiliencia en suelos finos y materiales granulares.* Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Transporte. Publicación Técnica N.42. México.

- Garnica, P., Gómez, J. & Sesma, J. (2002). *Mecánica de materiales para pavimentos*. Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Transporte. Publicación Técnica N.198. México.
- Garnica, P., Mestas, N. & Pérez, N. (2016). *El módulo de resiliencia: Cómo fluctúa después de la construcción del pavimento y cómo estimar estas fluctuaciones*. Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Transporte. Publicación Técnica N.478. México.
- Guzmán, A. (2015). "La red vial es indispensable para el desarrollo y crecimiento de un país".
 Recuperado de: http://udep.edu.pe/hoy/2015/la-red-vial-es-imprescindible-para-el-desarrollo-y-crecimiento-de-un-pais/
- Herrera, M. (2014). *Determinación del módulo resiliente de diseño de pavimentos mediante criterios ASSHTO 1993 y 2002.* Tesis de Master en Ingeniería Civil con mención en Ingeniería Vial. Universidad de Piura. Facultad de Ingeniería. Lima, Perú.
- Khoury, N., & Zaman, M. (2004). Correlation between resilient modulus, moisture variation, and soil suction for subgrade soils. Transportation Research Record: Journal of the Transportation Research Board, No. 1874. Washington, D.C., pp. 99–107.
- Leiva, F. (sin fecha). *Nueva guía de diseño mecanística-empírica para estructuras de pavimento* (vistazo a la guía 2002, proyecto NCHRP I 37A). Laboratorio Nacional de Materiales y Modelos Estructurales. San José, Costa Rica.
- Lu, N. & Likos, W. (2006). Suction stress caracteristic curve for unsaturated soils [archivo en PDF]. Recuperado de: http://inside.mines.edu/~ninglu/Lu%20publications/Lu%20paper%2039-2006.pdf
- Mena, W. (2013). *Implementación del modelo climático de la MEPDG AASHTO 2008 en Colombia para tres condiciones climáticas.* Tesis de Maestría en Ingeniería, Universidad EAFIT. Medellín, Colombia.
- Meza, V. (2012). Suelos parcialmente saturados, de la investigación a la cátedra universitaria. Boletín de Ciencias de la Tierra, [S.I.], n. 31, p. 23-38. Universidad Nacional de Colombia. Colombia.

- Mohs, C. (2008). Variación del módulo de resiliencia de suelos de subrasantes según el contenido de humedad y grado de compactación. Tesis de grado para obtener el título de licenciatura en Ingeniería Civil. Universidad de Costa Rica. San Pedro, San José. Costa Rica.
- National Cooperative Highway Research Program (NCHRP). (2004). *Guía de Diseño Empírico-Mecanística (MEPDG)*. Proyecto NCHRP 1-37, Estados Unidos
- Navarro, M. (2019). *Efecto de la humedad en el módulo resiliente de la subrasante*. Tesis de grado para obtener el título de licenciatura en Ingeniería Civil. Universidad de Costa Rica. San Pedro, San José. Costa Rica.
- Quesada, S. (2016). *Clasificación de un suelo según el Sistema Unificado de Clasificación de Suelos (SUCS)*. Instituto Tecnológico de Costa rica. Cartago, Costa Rica.
- Padilla, R. (Sin fecha). *Relaciones de fase en la ingeniería geotécnica moderna*. Universidad Nacional Autónoma de México. Ciudad de México, México.
- Perera, A. (2015). *Determinación y análisis de los factores climáticos críticos para el diseño de pavimentos flexibles en Costa Rica.* Proyecto de Graduación para optar por el grado de licenciatura en Ingeniería Civil. Universidad de Costa Rica.
- Pérez, N. et al. (2016). *Modelo para estimar el módulo de resiliencia de suelos finos compactados en la condición óptima de compactación.* Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Transporte. Publicación Técnica N.475. México.
- Pinto, C. (2006). *Curso básico de mecánica de suelos*. (3 ed.). Sao Paulo, Brasil: Oficina de Textos.
- Rojas, L. (2014). Evaluación del módulo resiliente y deformación permanente en material arcilloso con presencia de material friccionante. Trabajo de grado. Pontificia Universidad Javeriana, Bogotá DC, Colombia.
- Rico, A. & Del Castillo, H. (2005). *La ingeniería de suelos en las vías terrestres: carreteras, ferrocarriles y aeropistas*. México: Limusa.
- Sanz, J.J. (1975). *Mecánica de suelos*. Barcelona, España: Editores Técnicos Asociados S.A.
- Vargas, W. (2018). Notas de clase: Mecánica de Suelos 1 IC-0703. Universidad de Costa Rica.

- Vidal, J. & Osorio, R. (2002). *Módulo resiliente de suelos finogranulares*. Revista Universidad EAFIT, Num. 125.
- Witzack., M., Leiva, P., & Loria, L. (2012). ¿Debe Latinoamérica Implementar su Propia Guía Empírico-Mecanística de Diseño de Pavimentos (LAMPA)? Boletín Técnico PITRA, Vol 3. Num. 23.
- Zapata, C.E., Andrei, D., Witczak, M.W. & Houston, W.N. (2007). *Incorporation of environmental effects in pavement design.* International Journal of Road Materials and Pavement Design, Vol. 8, No. 4, pp. 667-693.

APÉNDICES Y ANEXOS

APÉNDICES

Apéndice I: Datos obtenidos de las pastillas para el ensayo de módulo resiliente

En los siguientes cuadros se muestran los datos obtenidos durante la creación de los especímenes de ensayo.

Cuadro A 1. Datos de los especímenes de ensayo, Cruce Atenas

W	TD	E	laboració	n espécime	n	Luego del acondicionamiento			Error w
objetivo (%)	ID -	W _{opt} (%)	Peso (g)	γ _{d max} (kg/m³)	γ(%)	Peso (g)	W _{a la falla}	∂ w	(%)
23,3	1	28,3	1170,6	1497,3	98	1112,6	23,3	0,35	0,09
23,3	2	26,5	1126,1	1457,5	95	1089,0	23,2	0,34	0,28
24,0	1	28,4	1165,8	1488,0	97	1116,7	24,1	0,36	-0,51
24,0	2	26,5	1118,4	1452,2	95	1090,4	24,0	0,35	-0,18
27,1	1	26,8	1148,1	1486,4	97	1146,7	26,6	0,40	1,75
27,1	2	27,1	1125,6	1450,1	95	1124,5	26,7	0,39	1,65
27,1	3	26,8	1141,8	1477,1	96	1140,4	26,6	0,39	1,76
28,8	1	28,1	1163,8	1490,8	97	1172,4	28,8	0,43	-0,15
28,8	2	28,3	1164,8	1488,1	97	1170,8	28,8	0,43	0,06

Cuadro A 2. Datos de los especímenes de ensayo, Guácimo

W	TD.	E	laboració	n espécime	acor	Luego del acondicionamiento			
objetivo (%)	ID ·	W _{opt} (%)	Peso (g)	^{γd max} (kg/m³)	γ(%)	Peso (g)	W _{a la falla} (%)	∂ w	(%)
30,6	1	37,0	1072,9	1323,7	102	1004,3	30,7	0,41	-0,44
30,6	2	37,2	1076,1	1326,3	102	1006,4	30,5	0,40	0,50
32,7	1	37,4	1079,9	1329,0	102	1031,2	32,8	0,44	-0,41
32,7	2	37,2	1081,5	1332,3	102	1033,2	32,7	0,44	-0,18
36,8	1	36,7	1080,9	1337,0	103	1079,9	36,6	0,49	0,61
36,8	2	36,5	1077,4	1334,5	102	1077,2	36,3	0,48	1,25
36,8	3	36,9	1080,0	1333,8	102	1080,8	37,0	0,49	-0,41

Cuadro A 3. Datos de los especímenes de ensayo, Sede Liberia UCR

W		Е	laboració	n espécime	en	Luego del acondicionamiento			Error w
objetivo (%)	ID	W _{opt} (%)	Peso (g)	^{γd max} (kg/m³)	γ(%)	Peso (g)	W _{a la falla} (%)	∂ w	(%)
15,7	1	18,7	1176,6	1675,1	103	1141,7	15,8	0,26	-0,47
15,7	2	19,1	1162,5	1649,8	101	1123,0	15,7	0,26	-0,04
17,3	1	19,1	1171,8	1663,2	102	1150,7	17,3	0,29	0,22
17,3	2	19,2	1163,0	1650,0	101	1142,0	17,3	0,29	-0,05
19,1	1	19,6	1165,7	1647,1	101	1177,7	19,5	0,32	-2,31
19,1	2	19,6	1160,3	1640,6	100	1181,5	19,8	0,32	-3,88
20,6	1	19,2	1169,2	1658,6	102	1185,3	20,4	0,34	0,62
20,6	1	19,5	1163,1	1645,9	101	1176,7	20,5	0,34	0,11

Apéndice II: Resultados de los módulos resilientes

Cruce Atenas

En los cuadros A4-A7 se presentan los resultados de los últimos 5 datos de módulo resiliente registrados para cada secuencia de carga para cada ensayo ejecutado al suelo de Atenas.

Cuadro A 4. Datos de Mr obtenidos para las muestras ensayadas a Ψ = 177 kPa

(I-D-)	Mue	stra 1	Mue	stra 2	- F (0/)
σ ₃ (kPa)	σ _d (kPa)	Mr (kPa)	σ <mark>d (kPa)</mark>	Mr (kPa)	Error (%)
55	39	211636	39	224709	-6,2
55	39	208846	39	250778	-20,1
55	39	178981	39	206093	-15,1
55	39	313050	39	247183	21,0
55	39	126845	38	278462	-119,5
41	36	192733	36	167239	13,2
41	36	176412	36	187489	-6,3
41	36	205751	36	164762	19,9
41	35	202853	36	164797	18,8
41	35	157672	36	190333	-20,7
28	33	171461	32	152420	11,1
28	33	159968	32	150186	6,1
28	33	192700	33	145394	24,5
28	33	156488	33	171518	-9,6
28	33	124323	32	168933	-35,9
14	30	154453	30	110796	28,3
14	30	167040	29	107565	35,6
14	30	121730	30	109185	10,3
14	31	137247	30	126392	7,9
14	30	120056	30	110804	7,7
55	60	185460	59	197301	-6,4
55	59	176282	59	177983	-1,0
55	59	187014	59	192518	-2,9
55	59	204842	59	218821	-6,8
55	60	170689	59	198769	-16,5
41	57	165480	57	175043	-5 , 8
41	57	160642	56	164238	-2,2
41	57	179088	56	159451	11,0
41	57	148239	56	173590	-17,1
41	56	170732	56	155070	9,2
28	54	139914	54	136734	2,3

(1.5.3	Mue	stra 1	Mue	— Frror (%	
σ 3 (kPa)	σ _d (kPa)	Mr (kPa)	od (kPa)	Mr (kPa)	Error (%
28	53	131408	53	155088	-18,0
28	55	131427	53	149715	-13,9
28	54	142164	54	138909	2,3
28	54	145939	53	125590	13,9
14	51	111358	50	105882	4,9
14	51	97130	50	103275	-6,3
14	51	109558	50	97821	10,7
14	51	113401	50	99300	12,4
14	51	104154	50	93307	10,4
55	80	212922	80	204474	4,0
55	80	192954	79	184909	4,2
55	80	198077	80	212746	-7,4
55	81	202636	80	219114	-8,1
55	80	196768	80	185882	5,5
41	77	178469	77	174313	2,3
41	77	171510	76	178411	-4,0
41	77	162062	76	158695	2,1
41	77	169567	76	158718	6,4
41	77	169533	75	158735	6,4
28	75	126004	74	128646	-2,1
28	75	133434	74	127913	4,1
28	74	133468	74	145230	-8,8
28	74	130606	74	132650	-1,6
28	74	132668	74	134204	-1,2
14	72	110879	71	101153	8,8
14	72	101177	71	100091	1,1
14	73	100626	71	100078	0,5
14	72	102893	71	100065	2,7
14	72	101206	71	99040	2,1
55	108	197880	108	200194	-1,2
55	109	191141	107	195677	-2,4
55	108	183733	108	206663	-12,5
55	108	195481	107	204972	-4,9
55	108	194618	108	191276	1,7
41	105	179948	105	172196	4,3
41	105	172683	105	168823	2,2
41	105	172663	105	178660	-3,5
41	105	176940	105	175735	0,7
41	105	167200	105	172959	-3,4
28	103	139284	102	138867	0,3
28	102	145774	102	133441	8,5

(I-D-)	Muestra 1		Mue	stra 2	F (0/)
σ₃ (kPa)	σ _d (kPa)	Mr (kPa)	σ d (kPa)	Mr (kPa)	Error (%)
28	102	137581	102	136099	1,1
28	102	138151	102	137728	0,3
28	101	143968	102	139402	3,2
14	100	109373	99	110429	-1,0
14	100	114198	100	112813	1,2
14	100	112226	99	107653	4,1
14	99	114179	99	108529	4,9
14	100	112768	100	109452	2,9

Cuadro A 5. Datos de Mr obtenidos para las muestras ensayadas a Ψ = 134 kPa

- (IcD=)	Mue	stra 1	Mue	stra 2	Error (%)
σ ₃ (kPa)	σ _d (kPa)	Mr (kPa)	σ <mark>d (kPa)</mark>	Mr (kPa)	Error (%)
55	39	224519	39	250874	-11,7
55	39	224618	39	250710	-11,6
55	39	253929	38	224731	11,5
55	39	208821	39	224714	-7,6
55	39	250744	38	224832	10,3
41	36	187324	36	186823	0,3
41	36	243640	36	214896	11,8
41	36	200133	36	254279	-27,1
41	35	240006	36	200076	16,6
41	36	227860	36	240906	-5,7
28	33	160029	34	187521	-17,2
28	33	197091	33	218341	-10,8
28	33	203004	33	208987	-2,9
28	33	195515	34	254392	-30,1
28	33	176532	33	218466	-23,8
14	31	181463	30	162575	10,4
14	30	168932	29	160186	5,2
14	30	187348	30	145458	22,4
14	30	149982	30	160109	-6,8
14	30	187460	30	145617	22,3
55	59	180660	59	200297	-10,9
55	59	228268	59	202065	11,5
55	59	211522	59	210352	0,6
55	59	215175	59	184392	14,3
55	59	185538	59	203763	-9,8
41	57	190275	57	164565	13,5
41	57	172128	57	171167	0,6
41	56	170750	57	156597	8,3

(15.3	Mue	stra 1	Mue	— Error (%)	
σ₃ (kPa)	σ _d (kPa) Mr (kPa)		σ _d (kPa)	Mr (kPa)	Error (%)
41	57	180739	57	197650	-9,4
41	57	166600	57	171045	-2,7
28	54	173572	54	161013	7,2
28	54	190192	54	155325	18,3
28	54	197216	54	154074	21,9
28	54	160775	54	147508	8,3
28	54	192064	54	151518	21,1
14	51	133349	51	115584	13,3
14	51	133314	51	136839	-2,6
14	51	148313	51	133653	9,9
14	51	137659	51	123185	10,5
14	50	141242	51	126361	10,5
55	81	207921	80	174629	16,0
55	80	191545	80	175679	8,3
55	80	204346	80	188401	7,8
55	80	180320	80	213171	-18,2
55	81	192893	80	180703	6,3
41	77	174238	77	168971	3,0
41	78	171333	77	158477	7,5
41	77	173220	77	167027	3,6
41	77	183652	77	156662	14,7
41	77	164745	77	171788	-4,3
28	74	151663	75	147132	3,0
28	75	163402	75	147180	9,9
28	75	155184	75	145373	6,3
28	75	163327	75	156674	4,1
28	75	150508	75	161707	-7,4
14	72	127929	73	126147	1,4
14	72	119708	72	131473	-9,8
14	72	136455	72	128751	5,6
14	72	137233	72	128040	6,7
14	72	131393	72	126231	3,9
55	109	197856	108	182358	7,8
55	108	182985	109	177935	2,8
55	108	191103	109	180177	5,7
55	109	187713	108	180907	3,6
55	108	178390	109	175771	1,5
41	105	175526	106	163185	7,0
41	105	171307	105	161170	5,9
41	105	181460	105	163168	10,1
41	105	169290	106	173650	-2,6

(I-D-)	Mue	stra 1	Mue	stra 2	F (0/)
σ₃ (kPa)	σ _d (kPa)	Mr (kPa)	σ _d (kPa)	Mr (kPa)	Error (%)
41	105	174059	105	163191	6,2
28	103	147652	102	148495	-0,6
28	102	157278	102	156606	0,4
28	102	162224	102	149259	8,0
28	102	168581	102	145371	13,8
28	102	155666	102	149818	3,8
14	99	127306	98	126554	0,6
14	99	129248	99	126561	2,1
14	100	128910	99	124693	3,3
14	99	126785	100	128666	-1,5
14	99	129678	100	133744	-3,1

Cuadro A 6. Datos de Mr obtenidos para las muestras ensayadas a Ψ = 26 kPa

- (IcD-)	Mue	stra 1	Mues	stra 2	Mue	stra 3	E	rror (%)
σ₃ (kPa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	1-2	1-3	2-3
55	38	342630	39	247309	38	222014	27,8	35,2	10,2
55	39	274309	39	304805	38	206402	-11,1	24,8	32,3
55	40	227685	39	208943	38	209313	8,2	8,1	-0,2
55	39	253943	39	247113	38	190533	2,7	25,0	22,9
55	39	312965	39	253895	38	274913	18,9	12,2	-8,3
41	36	184499	36	224550	35	247618	-21,7	-34,2	-10,3
41	37	230833	36	181908	35	197560	21,2	14,4	-8,6
41	36	270469	37	178998	35	240478	33,8	11,1	-34,3
41	36	192685	36	227689	35	215444	-18,2	-11,8	5,4
41	36	189788	36	224594	36	228125	-18,3	-20,2	-1,6
28	33	197029	33	236472	33	271071	-20,0	-37,6	-14,6
28	33	295592	33	218191	33	279005	26,2	5,6	-27,9
28	33	299815	33	214942	33	283021	28,3	5,6	-31,7
28	33	243366	33	197046	33	203412	19,0	16,4	-3,2
28	33	357537	33	209245	33	218624	41,5	38,9	-4,5
14	30	243452	29	181972	30	203191	25,3	16,5	-11,7
14	29	236457	30	171445	30	243944	27,5	-3,2	-42,3
14	30	266571	30	243623	30	267043	8,6	-0,2	-9,6
14	30	181962	30	187452	30	218498	-3,0	-20,1	-16,6
14	30	266649	30	211587	29	301296	20,6	-13,0	-42,4
55	60	241155	59	180827	58	251596	25,0	-4,3	-39,1
55	60	224779	59	188688	58	251601	16,1	-11,9	-33,3
55	59	226616	59	194092	59	235567	14,4	-3,9	-21,4
55	60	218818	59	213398	58	200197	2,5	8,5	6,2
55	60	206539	59	215160	58	247280	-4,2	-19,7	-14,9

Muestra 1		stra 1	Muestra 2		Mues	stra 3	Error (%)		
σ₃ (kPa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	1-2	1-3	2-3
41	56	194173	58	228411	57	237492	-17,6	-22,3	-4,0
41	57	206831	56	201626	57	206895	2,5	0,0	-2,6
41	58	210168	57	185610	57	182567	11,7	13,1	1,6
41	57	210188	57	203271	57	243428	3,3	-15,8	-19,8
41	57	187271	56	187230	57	227102	0,0	-21,3	-21,3
28	55	197425	54	224679	54	215550	-13,8	-9,2	4,1
28	54	197446	54	182324	54	187409	7,7	5,1	-2,8
28	54	195793	54	187190	54	194349	4,4	0,7	-3,8
28	54	228532	54	195736	54	194370	14,4	14,9	0,7
28	54	195870	54	224760	53	213930	-14,7	-9,2	4,8
14	51	179467	51	171003	51	194448	4,7	-8,3	-13,7
14	52	208468	51	181126	51	178176	13,1	14,5	1,6
14	51	180950	51	171134	51	178222	5,4	1,5	-4,1
14	52	173710	51	169702	51	194396	2,3	-11,9	-14,6
14	52	198925	51	177680	51	182857	10,7	8,1	-2,9
55	80	198005	80	189701	79	192108	4,2	3,0	-1,3
55	81	228615	79	183998	79	190990	19,5	16,5	-3,8
55	80	194011	80	193069	80	198283	0,5	-2,2	-2,7
55	80	229951	80	186134	79	198294	19,1	13,8	-6,5
55	81	205810	79	181662	79	189783	11,7	7,8	-4,5
41	77	187066	77	173486	77	198300	7,3	-6,0	-14,3
41	77	197967	76	194742	78	188396	1,6	4,8	3,3
41	77	209199	77	175488	77	208330	16,1	0,4	-18,7
41	77	198001	77	182889	77	197122	7,6	0,4	-7,8
41	77	196861	76	172496	77	199345	12,4	-1,3	-15,6
28	75	204651	75	167010	75	187359	18,4	8,4	-12,2
28	75	193997	75	187190	75	188438	3,5	2,9	-0,7
28	74	196874	75	160715	75	186252	18,4	5,4	-15,9
28	75	192877	75	179647	75	168999	6,9	12,4	5,9
28	75	197743	76	179495	75	176647	9,2	10,7	1,6
14	72	172374	72	151793	72	176723	11,9	-2,5	-16,4
14	72	199035	72	160718	72	179854	19,3	9,6	-11,9
14	72	179420	72	160745	72	181898	10,4	-1,4	-13,2
14	72	171424	72	156612	72	180873	8,6	-5,5	-15,5
14	72	179514	71	157906	72	181926	12,0	-1,3	-15,2
55	108	175441	108	165504	109	165789	5,7	5,5	-0,2
55	108	195388	108	160699	109	177404	17,8	9,2	-10,4
55	109	180548	108	163058	109	184226	9,7	-2,0	-13,0
55	108	175455	109	159373	109	170460	9,2	2,8	-7,0
55	109	187656	108	166152	109	178185	11,5	5,0	-7,2
41	105	167188	105	164798	106	172558	1,4	-3,2	-4,7

- (LD-)	Mue	stra 1	Mues	stra 2	Mue	stra 3	E	rror (%	o)
σ₃ (kPa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	1-2	1-3	2-3
41	105	181444	105	155185	105	175364	14,5	3,4	-13,0
41	106	182164	106	153636	105	175365	15,7	3,7	-14,1
41	106	169244	106	150341	105	175376	11,2	-3,6	-16,7
41	105	177575	106	158702	105	183634	10,6	-3,4	-15,7
28	102	171250	105	156442	103	162133	8,6	5,3	-3,6
28	102	171968	104	162342	103	172547	5,6	-0,3	-6,3
28	102	182199	104	155812	103	170457	14,5	6,4	-9,4
28	102	174786	105	163009	102	167108	6,7	4,4	-2,5
28	101	164011	104	156861	103	175371	4,4	-6,9	-11,8
14	99	160260	100	140501	100	163848	12,3	-2,2	-16,6
14	99	164684	100	151771	99	159091	7,8	3,4	-4,8
14	99	157951	100	142846	99	163172	9,6	-3,3	-14,2
14	99	164690	100	153044	98	159408	7,1	3,2	-4,2
14	99	162763	99	150567	99	159503	7,5	2,0	-5,9

Cuadro A 7. Datos de Mr obtenidos para las muestras ensayadas a Ψ = 12 kPa

- (LD=)	Mue	stra 1	Mue	stra 2	- F (0/)
σ ₃ (kPa)	σ _d (kPa)	Mr (kpa)	σ <mark>d (kPa)</mark>	Mr (kpa)	Error (%)
55	39	147409	39	145206	1,5
55	39	139192	38	154281	-10,8
55	39	152151	39	147315	3,2
55	39	158760	39	160958	-1,4
55	39	143587	39	142957	0,4
41	36	137291	36	198030	-44,2
41	36	184063	36	152061	17,4
41	36	152265	35	137127	9,9
41	36	130179	36	158740	-21,9
41	36	135215	35	164890	-21,9
28	33	139290	33	143161	-2,8
28	33	141235	32	122524	13,2
28	33	145362	33	152051	-4,6
28	33	150038	33	141114	5,9
28	33	135408	33	171683	-26,8
14	30	137366	29	131399	4,3
14	30	137312	29	118240	13,9
14	30	141235	30	139049	1,5
14	30	114371	30	121773	-6,5
14	30	116443	30	147732	-26,9
55	60	119551	59	126481	-5,8
55	59	113253	60	121418	-7,2

(LB:)	Mue	stra 1	Mue	stra 2	— Eurou (0/-)
σ 3 (kPa)	σ _d (kPa) Mr (kpa)		σ _d (kPa)	Mr (kpa)	Error (%
55	60	124933	59	135521	-8,5
55	60	130334	59	130332	0,0
55	59	120917	59	110253	8,8
41	57	120552	57	123931	-2,8
41	57	113327	57	117203	-3,4
41	57	116354	57	125474	-7,8
41	57	114204	57	127520	-11,7
41	58	103928	56	108491	-4,4
28	55	119192	54	112111	5,9
28	54	106701	54	114379	-7,2
28	54	119514	54	119503	0,0
28	54	114190	54	115331	-1,0
28	54	111314	53	117728	-5,8
14	51	107634	51	106675	0,9
14	51	108528	51	109462	-0,9
14	51	96452	51	107608	-11,6
14	51	96271	51	102482	-6,5
14	51	101625	51	114164	-12,3
55	81	101080	79	109520	-8,3
55	81	101662	80	106344	-4,6
55	81	98428	80	105118	-6,8
55	81	100487	80	109513	-9,0
55	81	96934	80	103873	-7,2
41	77	96785	78	103315	-6,7
41	77	92362	78	106310	-15,1
41	77	97736	78	106341	-8,8
41	78	96356	77	109483	-13,6
41	78	98398	77	98935	-0,5
28	75	94043	75	97880	-4,1
28	75	92978	75	94885	-2,1
28	75	90530	75	97459	-7,7
28	75	92464	75	93106	-0,7
28	75	87667	75	94917	-8,3
14	72	81986	72	86613	-5,6
14	72	84084	73	94333	-12,2
14	73	83903	73	91218	-8,7
14	71	85945	72	90705	-5,5
14	72	82958	73	85412	-3,0
55	109	79748	109	87905	-10,2
55	109	78632	110	86848	-10,4
55	109	79760	109	87359	-9,5

(I-D-)	Mue	stra 1	Mue	stra 2	F (0/)
σ₃ (kPa)	σ _d (kPa)	Mr (kpa)	σ <mark>d (kPa)</mark>	Mr (kpa)	Error (%)
55	109	79438	109	87198	-9,8
55	109	77241	109	85646	-10,9
41	106	77282	106	86495	-11,9
41	106	77672	105	82152	-5,8
41	106	75977	106	87345	-15,0
41	106	75307	106	87519	-16,2
41	106	77912	106	83819	-7,6
28	102	71265	103	82022	-15,1
28	102	72178	103	80920	-12,1
28	103	75338	103	80585	-7,0
28	103	72779	102	80495	-10,6
28	102	70971	103	77723	-9,5
14	100	67867	100	74267	-9,4
14	99	68393	99	74968	-9,6
14	100	66289	100	74670	-12,6
14	99	68115	99	73754	-8,3
14	99	68723	100	75173	-9,4

<u>Guácimo</u>

En los cuadros A8-A10 se presentan los resultados de los últimos 5 datos de módulo resiliente registrados para cada secuencia de carga para cada ensayo ejecutado al suelo de Guácimo.

Cuadro A 8. Datos de Mr obtenidos para las muestras ensayadas a Ψ = 153 kPa

(I-D-)	Mue	stra 1	Mue	stra 2	- F (0/)
σ з (kPa)	σ _d (kPa)	Mr (kpa)	σ <mark>d (kPa)</mark>	Mr (kpa)	Error (%)
55	39	200672	39	227782	-13,5
55	39	230663	39	190114	17,6
55	39	187089	40	264741	-41,5
55	39	253878	39	211817	16,6
55	40	237529	39	227900	4,1
41	35	266664	35	173959	34,8
41	36	221448	35	157868	28,7
41	36	218224	36	203187	6,9
41	36	274656	35	184882	32,7
41	36	221625	36	184825	16,6
28	34	179110	33	176601	1,4
28	33	156677	33	187434	-19,6
28	33	221499	33	145431	34,3
28	33	169018	33	187458	-10,9

(1.5.)	Mue	stra 1	Mue	- (0()		
σ₃ (kPa)	od (kPa)	Mr (kpa)	od (kPa)	Mr (kpa)	Error (%)	
28	33	192820	34	152704	20,8	
14	30	141249	30	162443	-15,0	
14	30	166413	30	164734	1,0	
14	30	134971	30	182172	-35,0	
14	30	152259	30	160342	-5,3	
14	30	150055	30	171647	-14,4	
55	60	187004	59	184236	1,5	
55	59	177853	59	192636	-8,3	
55	60	220440	59	226773	-2,9	
55	59	213398	59	195734	8,3	
55	59	213336	59	188434	11,7	
41	57	187037	57	179501	4,0	
41	57	195487	57	181005	7,4	
41	57	192343	57	160812	16,4	
41	57	187051	57	160687	14,1	
41	57	180743	57	154800	14,4	
28	54	170627	54	143519	15,9	
28	54	185472	54	146015	21,3	
28	54	170579	53	135649	20,5	
28	54	183537	54	138886	24,3	
28	54	170746	54	139951	18,0	
14	51	142144	51	125591	11,6	
14	51	122866	51	125594	-2,2	
14	51	137633	51	121950	11,4	
14	50	123398	51	119577	3,1	
14	51	124889	51	121053	3,1	
55	81	185715	80	184761	0,5	
55	80	184694	80	186958	-1,2	
55	80	197689	81	195051	1,3	
55	80	191539	80	195668	-2,2	
55	81	205476	80	188012	8,5	
41	77	183618	77	147931	19,4	
41	77	191566	77	160531	16,2	
41	77	180268	78	169391	6,0	
41	77	174126	77	163898	5,9	
41	78	185759	77	161515	13,1	
28	75	174149	75	132545	23,9	
28	75	160388	74	142655	11,1	
28	75	176109	75	139445	20,8	
28	75	152363	75	133391	12,5	
28	75	163225	74	131913	19,2	

ga (kDa)	Mue	stra 1	Mue	- (0/)		
σ₃ (kPa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	Error (%)	
14	72	136297	73	120690	11,5	
14	71	136281	73	119077	12,6	
14	72	125865	72	114463	9,1	
14	72	137044	72	118686	13,4	
14	72	138554	72	115819	16,4	
55	108	192507	108	187683	2,5	
55	108	215700	108	195390	9,4	
55	109	219229	109	193434	11,8	
55	108	187545	109	188422	-0,5	
55	108	201408	108	202937	-0,8	
41	105	190993	105	176285	7,7	
41	105	179048	105	171291	4,3	
41	105	180512	105	169295	6,2	
41	105	190992	105	175492	8,1	
41	106	181246	105	171897	5,2	
28	103	161558	103	153115	5,2	
28	103	169268	102	140570	17,0	
28	103	165315	102	151850	8,1	
28	103	150208	103	145326	3,3	
28	102	164622	103	149042	9,5	
14	100	132917	99	115576	13,0	
14	99	130782	99	119160	8,9	
14	100	131844	99	117037	11,2	
14	100	140476	99	122067	13,1	
14	99	134458	99	117186	12,8	

Cuadro A 9. Datos de Mr obtenidos para las muestras ensayadas a $\Psi\text{=}~58~\text{kPa}$

(I-D-)	kPa) Muestra 1 σ _d (kPa) Mr (kpa)		Mue	Muestra 2			
σ₃ (kPa)			σ <mark>d (kPa)</mark>	Mr (kpa)	Error (%)		
55	39	209102	38	243973	-16,7		
55	39	247563	39	251109	-1,4		
55	39	218599	38	187763	14,1		
55	39	221868	38	38 244138			
55	39	194966	39	215357	-10,5		
41	37	270867	35	190552	29,7		
41	36	203174	36	267268	-31,5		
41	36	240209	36	228318	5,0		
41	37	250964	35	247634	1,3		
41	36	240209	36	240693	-0,2		
28	33	228304	33	271395	-18,9		

/I B \	Mue	stra 1	Mue	Error (%)		
σ 3 (kPa)	σ _d (kPa)	Mr (kpa)	od (kPa)	σ _d (kPa) Mr (kpa)		
28	33	244020	33	221926	9,1	
28	33	203362	33	187807	7,6	
28	33	271180	33	185063	31,8	
28	33	203264	33	247700	-21,9	
14	30	190502	30	171852	9,8	
14	30	162777	30	187924	-15,4	
14	30	131724	30	171830	-30,4	
14	31	167456	30	240545	-43,6	
14	30	160499	30	158151	1,5	
55	58	200379	58	221483	-10,5	
55	58	239633	59	300670	-25,5	
55	58	233779	59	210490	10,0	
55	59	223301	59	178333	20,1	
55	58	217721	58	210463	3,3	
41	57	197607	57	205570	-4,0	
41	57	179672	57	189149	-5,3	
41	57	199202	57	214024	-7,4	
41	57	220905	57	179804	18,6	
41	58	222943	57	219274	1,6	
28	54	225190	54	187647	16,7	
28	55	215688	54	171207	20,6	
28	55	189020	54	178384	5,6	
28	55	200857	53	171216	14,8	
28	54	190686	54	202104	-6,0	
14	52	161047	51	157241	2,4	
14	51	141385	51	164688	-16,5	
14	52	140218	52	158539	-13,1	
14	52	147464	51	165993	-12,6	
14	52	154161	51	181347	-17,6	
55	81	199443	80	227850	-14,2	
55	80	206160	81	206239	0,0	
55	80	200240	80	198442	0,9	
55	81	196013	80	197294	-0,7	
55	81	228970	81	229099	-0,1	
41	77	203706	78	197284	3,2	
41	76	189904	77	189999	-0,1	
41	77	201367	77	198424	1,5	
41	77	190973	77	198413	-3,9	
41	77	201370	77	195008	3,2	
28	75	180836	75	177743	1,7	
28	76	188448	75 75	166218	11,8	

(1 D ·)	Mue	stra 1	Mue	Muestra 2		
σ 3 (kPa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	Error (%)	
28	76	176664	75	175743	0,5	
28	75	168805	75	185280	-9,8	
28	76	191561	75	181883	5,1	
14	72	153702	73	149146	3,0	
14	71	144679	72	156813	-8,4	
14	73	145497	73	156776	-7,8	
14	72	152766	72	148285	2,9	
14	72	150758	72	160897	-6,7	
55	109	187968	109	216319	-15,1	
55	109	195704	108	196644	-0,5	
55	108	179394	109	206877	-15,3	
55	109	180833	108	201233	-11,3	
55	108	189840	108	195022	-2,7	
41	105	191361	105	182553	4,6	
41	105	183216	106	192262	-4,9	
41	105	179387	106	206020	-14,8	
41	105	189742	106	185050	2,5	
41	105	178740	106	168989	5,5	
28	103	160144	102	167588	-4,6	
28	103	175785	102	178810	-1,7	
28	103	171535	103	172361	-0,5	
28	103	179430	103	169006	5,8	
28	102	168205	103	178040	-5,8	
14	99	158201	99	155466	1,7	
14	100	150504	99	154796	-2,9	
14	100	157932	100	159641	-1,1	
14	100	149181	100	153942	-3,2	
14	100	157230	99	152097	3,3	

Cuadro A 10. Datos de Mr obtenidos para las muestras ensayadas a Ψ = 11 kPa

σ ₃ (kPa)	Mues	stra 1	Mues	stra 2	Mue	stra 3	Error (%)		
	σ_d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	σ_d (kPa)	Mr (kpa)	1-2	1-3	2-3
55	38	149851	39	142805	39	136832	4,7	8,7	4,2
55	38	176204	39	131495	38	134956	25,4	23,4	-2,6
55	38	162098	39	134874	39	126743	16,8	21,8	6,0
55	38	178810	39	140852	39	158476	21,2	11,4	-12,5
55	38	154350	39	131790	39	144855	14,6	6,2	-9,9
41	36	133194	36	147048	36	136906	-10,4	-2,8	6,9
41	36	173785	36	138917	37	135294	20,1	22,1	2,6
41	35	152132	36	161959	37	133433	-6,5	12,3	17,6

	Muestra 1		Muestra 2		Muestra 3		Error (%)		
σ₃ (kPa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	1-2	1-3	2-3
41	35	143191	35	159688	36	129618	-11,5	9,5	18,8
41	35	184423	36	151953	37	134813	17,6	26,9	11,3
28	33	137258	33	144972	33	136925	-5,6	0,2	5,6
28	33	126266	33	132957	33	136918	-5,3	-8,4	-3,0
28	33	126262	33	144897	34	117371	-14,8	7,0	19,0
28	32	136912	33	142893	33	123285	-4,4	10,0	13,7
28	33	143166	33	110514	33	124885	22,8	12,8	-13,0
14	30	115950	30	97995	30	101226	15,5	12,7	-3,3
14	30	137203	30	105578	30	117398	23,0	14,4	-11,2
14	30	121764	30	105580	30	105653	13,3	13,2	-0,1
14	30	143183	30	129725	31	112012	9,4	21,8	13,7
14	30	141144	30	137070	29	113903	2,9	19,3	16,9
55	59	139870	59	120196	60	122515	14,1	12,4	-1,9
55	59	115263	59	111985	59	106335	2,8	7,7	5,0
55	59	128548	59	112013	60	113764	12,9	11,5	-1,6
55	59	139879	59	122529	60	116840	12,4	16,5	4,6
55	59	117595	59	110899	59	109881	5,7	6,6	0,9
41	57	116010	57	119722	58	107194	-3,2	7,6	10,5
41	57	119532	57	110864	58	108894	7,3	8,9	1,8
41	57	123953	57	114962	57	105418	7,3	15,0	8,3
41	57	124016	57	123069	57	115629	0,8	6,8	6,0
41	57	116425	57	113880	58	116563	2,2	-0,1	-2,4
28	54	109479	55	102974	55	105545	5,9	3,6	-2,5
28	54	116309	55	99077	54	102211	14,8	12,1	-3,2
28	54	103317	54	99767	54	96202	3,4	6,9	3,6
28	54	112322	54	109011	55	104732	2,9	6,8	3,9
28	54	104982	54	107244	54	102354	-2,2	2,5	4,6
14	51	98452	51	106485	51	82605	-8,2	16,1	22,4
14	51	98419	52	94933	51	88773	3,5	9,8	6,5
14	51	101633	51	92601	51	84516	8,9	16,8	8,7
14	50	92790	51	96769	51	84501	-4,3	8,9	12,7
14	51	97684	51	93696	51	85273	4,1	12,7	9,0
55	81	111317	81	95997	81	101952	13,8	8,4	-6,2
55	80	112181	80	104727	81	102002	6,6	9,1	2,6
55	80	105619	80	100757	80	90782	4,6	14,0	9,9
55	81	106832	81	102451	81	99810	4,1	6,6	2,6
55	80	111422	81	95078	81	95098	14,7	14,7	0,0
41	76	104468	77	99027	78	94091	5,2	9,9	5,0
41	77	110099	77	94548	78	96100	14,1	12,7	-1,6
41	76	103837	77	99126	78	100840	4,5	2,9	-1,7
41	77	108808	77	96031	78	93192	11,7	14,4	3,0

(1.5.)	Mue	stra 1	Mues	Muestra 2		Muestra 3		Error (%)		
σ 3 (kPa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	1-2	1-3	2-3	
41	76	106138	77	96437	78	95545	9,1	10,0	0,9	
28	75	96845	75	92274	75	85916	4,7	11,3	6,9	
28	75	95355	75	94581	75	88648	0,8	7,0	6,3	
28	75	94281	75	89877	75	87400	4,7	7,3	2,8	
28	75	96859	75	88305	75	92349	8,8	4,7	-4,6	
28	75	97390	75	90937	76	86376	6,6	11,3	5,0	
14	72	84427	72	78556	72	76443	7,0	9,5	2,7	
14	72	85331	72	81116	71	76073	4,9	10,8	6,2	
14	72	84440	71	81133	72	78943	3,9	6,5	2,7	
14	72	83956	71	83181	72	76442	0,9	8,9	8,1	
14	72	87066	71	82892	73	78340	4,8	10,0	5,5	
55	108	94379	109	87542	109	89311	7,2	5,4	-2,0	
55	108	94378	109	86309	109	87500	8,5	7,3	-1,4	
55	108	96465	109	87878	109	88376	8,9	8,4	-0,6	
55	108	92744	108	88610	109	85895	4,5	7,4	3,1	
55	108	95882	109	86017	109	83303	10,3	13,1	3,2	
41	105	91057	106	85306	105	80733	6,3	11,3	5,4	
41	105	87566	105	83124	105	81949	5,1	6,4	1,4	
41	104	86312	106	85949	105	83423	0,4	3,3	2,9	
41	105	89001	105	82637	106	82266	7,2	7,6	0,4	
41	105	92290	105	84600	106	81699	8,3	11,5	3,4	
28	101	82953	103	79251	102	76477	4,5	7,8	3,5	
28	101	84273	103	79996	102	78521	5,1	6,8	1,8	
28	101	83775	103	79490	102	77419	5,1	7,6	2,6	
28	101	84961	103	82989	102	78767	2,3	7,3	5,1	
28	102	85983	103	79255	102	78096	7,8	9,2	1,5	
14	98	76702	100	72820	99	68525	5,1	10,7	5,9	
14	98	75070	100	71018	100	71362	5,4	4,9	-0,5	
14	98	77081	100	74034	100	71075	4,0	7,8	4,0	
14	98	77720	100	70138	99	68793	9,8	11,5	1,9	
14	98	77836	100	72278	100	67232	7,1	13,6	7,0	

Sede Liberia UCR

En los cuadros A11-A14 se presentan los resultados de los últimos 5 datos de módulo resiliente registrados para cada secuencia de carga para cada ensayo ejecutado al suelo de Liberia.

Cuadro A 11. Datos de Mr obtenidos para las muestras ensayadas a Ψ = 177 kPa

- (kp-)	Mue	stra 1	Mue	stra 2	F (0/)
σ ₃ (kPa)	σ _d (kPa)	Mr (kpa)	σ <mark>d (kPa)</mark>	Mr (kpa)	Error (%)
55	39	609886	40	322509	47,1
55	39	247499	40	286663	-15,8
55	39	251022	39	358355	-42,8
55	39	313450	39	282664	9,8
55	39	406739	39	363517	10,6
41	36	278838	36	257888	7,5
41	36	406334	36	309156	23,9
41	36	270975	36	270912	0,0
41	36	313681	36	228146	27,3
41	36	348300	36	247337	29,0
28	32	266911	33	353213	-32,3
28	33	263083	33	240205	8,7
28	33	274907	33	271090	1,4
28	33	353331	34	322523	8,7
28	33	271053	33	240261	11,4
14	30	240376	29	194371	19,1
14	29	263191	31	228069	13,3
14	30	309296	30	338175	-9,3
14	30	304817	30	221685	27,3
14	29	251417	31	247609	1,5
55	59	235552	59	280237	-19,0
55	59	249363	59	280264	-12,4
55	59	262670	59	233549	11,1
55	58	219380	59	215560	1,7
55	59	251351	59	287304	-14,3
41	57	271601	57	228734	15,8
41	57	205306	58	210284	-2,4
41	57	217334	57	230534	-6,1
41	57	225100	57	175208	22,2
41	57	257395	57	241554	6,2
28	53	233646	54	247403	-5,9
28	54	205309	54	192779	6,1
28	54	205275	53	201930	1,6
28	54	228803	53	262873	-14,9

σ₃ (kPa)	Muestra 1		Mue	- (0()	
	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	Error (%
28	53	267204	54	253591	5,1
14	51	201959	52	207005	-2,5
14	52	199143	51	195932	1,6
14	50	206788	50	203643	1,5
14	51	194364	51	189004	2,8
14	51	241467	50	179829	25,5
55	80	220714	80	204934	7,1
55	80	228877	80	230313	-0,6
55	80	228867	80	219576	4,1
55	80	236335	80	212031	10,3
55	80	219484	80	217044	1,1
41	77	232435	77	209628	9,8
41	77	212100	77	209579	1,2
41	77	225038	77	194950	13,4
41	77	232390	77	202599	12,8
41	77	225085	77	203792	9,5
28	75	191086	75	188466	1,4
28	75	203848	75	192124	5,8
28	75	212080	75	192118	9,4
28	75	212051	75	187424	11,6
28	75	213055	75	213274	-0,1
14	72	185254	72	173743	6,2
14	72	187396	72	180835	3,5
14	72	192116	72	187386	2,5
14	72	197210	72	168840	14,4
14	72	191046	72	172750	9,6
55	108	217130	109	206735	4,8
55	108	210075	108	205045	2,4
55	109	228528	109	195716	14,4
55	108	207599	109	217890	-5,0
55	109	202906	108	201149	0,9
41	105	204295	106	182486	10,7
41	105	209236	106	201934	3,5
41	105	200349	105	184734	7,8
41	105	216274	106	192187	11,1
41	105	210117	106	180906	13,9
28	102	190636	103	182505	4,3
28	102	194990	102	168183	13,7
28	102	200350	102	181008	9,7
28	102	199518	103	174340	12,6
28	102	204295	102	184056	9,9

σ ₃ (kPa)	Mue	Muestra 1 Mue		stra 2	E (0/)
	σ _d (kPa)	Mr (kpa)	σ <mark>d (kPa)</mark>	Mr (kpa)	Error (%)
14	99	189878	98	163622	13,8
14	99	174368	99	162907	6,6
14	99	189079	99	160520	15,1
14	99	178014	99	159834	10,2
14	99	181031	99	161835	10,6

Cuadro A 12. Datos de Mr obtenidos para las muestras ensayadas a Ψ = 41 kPa

(15.)	Muestra 1		Mue	- F (0/)	
σ 3 (kPa)	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	Error (%)
55	38	231135	40	169495	26,7
55	38	203054	39	164792	18,8
55	38	190186	40	164784	13,4
55	38	208980	40	282460	-35,2
55	38	247265	39	205883	16,7
41	35	206100	36	187362	9,1
41	35	203228	36	192686	5,2
41	35	203080	37	202893	0,1
41	35	176586	36	224522	-27,1
41	35	198366	36	203279	-2,5
28	32	200102	33	187344	6,4
28	31	184667	33	164729	10,8
28	32	202987	33	200027	1,5
28	32	202965	33	202922	0,0
28	31	212031	33	192783	9,1
14	29	206181	31	141066	31,6
14	29	174138	31	156530	10,1
14	29	160248	31	159902	0,2
14	29	141346	30	135244	4,3
14	29	162501	30	150361	7,5
55	58	158257	60	166793	-5,4
55	59	164337	59	169224	-3,0
55	59	170920	59	179251	-4,9
55	59	194247	59	172031	11,4
55	59	185814	60	143439	22,8
41	57	155162	58	174840	-12,7
41	58	162169	58	158625	2,2
41	57	152214	57	147123	3,3
41	58	167074	57	148331	11,2
41	57	152659	57	157973	-3,5
28	54	152269	54	142159	6,6
28	55	144795	54	156654	-8,2

σ₃ (kPa)	Muestra 1		Mue	E (0/)	
	σ _d (kPa)	Mr (kpa)	σ _d (kPa)	Mr (kpa)	Error (%
28	54	159576	54	144564	9,4
28	55	145990	54	149548	-2,4
28	55	166162	53	166726	-0,3
14	51	143690	51	127551	11,2
14	52	142503	51	122910	13,7
14	51	125760	51	129278	-2,8
14	51	129581	51	134383	-3,7
14	51	133493	51	126468	5,3
55	81	160633	80	158901	1,1
55	81	158341	79	150540	4,9
55	80	148898	80	152266	-2,3
55	80	168601	80	150297	10,9
55	80	149774	80	146790	2,0
41	78	153483	77	143319	6,6
41	77	148857	77	140862	5,4
41	78	142800	77	148594	-4,1
41	78	153493	77	141692	7,7
41	78	149932	77	136181	9,2
28	75	131432	75	135421	-3,0
28	76	138751	74	129903	6,4
28	75	140390	75	137017	2,4
28	75	134923	75	136254	-1,0
28	75	127689	76	126425	1,0
14	73	118125	73	119539	-1,2
14	72	115217	74	119244	-3,5
14	72	119740	73	115690	3,4
14	72	122864	73	112855	8,1
14	73	126078	73	116996	7,2
55	109	136517	109	134607	1,4
55	109	138118	109	140090	-1,4
55	109	138694	109	142997	-3,1
55	109	132841	108	138980	-4,6
55	108	138168	109	135795	1,7
41	105	134974	105	128070	5,1
41	106	131421	105	128088	2,5
41	106	128933	105	127576	1,1
41	106	135521	106	128601	5,1
41	105	124945	106	132178	-5,8
28	102	118514	102	120944	-2,1
28	102	121173	102	119464	1,4
28	102	120677	102	114052	5,5

(I-D-)	Muestra 1		Mue	F (0/)	
σ з (kPa)	σ _d (kPa)	Mr (kpa)	σ <mark>d (kPa)</mark>	Mr (kpa)	Error (%)
28	102	118046	102	122187	-3,5
28	102	120003	102	114512	4,6
14	100	108460	99	109675	-1,1
14	100	107992	99	104317	3,4
14	99	108936	99	101012	7,3
14	100	107532	99	105618	1,8
14	100	110277	100	108692	1,4

Cuadro A 13. Datos de Mr obtenidos para las muestras ensayadas a Ψ = 12 kPa

(1.5.)	Muestra 1		Mue	- F (0/)	
σ 3 (kPa)	σ _d (kPa)	Mr (kPa)	σ <mark>d (kPa)</mark>	Mr (kPa)	Error (%)
55	39	103264	39	93529	9,4
55	39	103260	39	86273	16,5
55	40	114206	39	82228	28,0
55	39	106183	40	90589	14,7
55	39	101771	39	86763	14,7
41	36	98001	36	75945	22,5
41	37	96929	35	82619	14,8
41	37	91809	36	81037	11,7
41	36	83024	36	76170	8,3
41	36	96678	36	82173	15,0
28	33	81861	33	68406	16,4
28	33	84291	33	68429	18,8
28	33	86035	34	74706	13,2
28	33	85476	33	65571	23,3
28	33	86612	33	68513	20,9
14	29	66775	30	59255	11,3
14	30	68783	30	57572	16,3
14	30	70758	30	55361	21,8
14	30	66881	30	60099	10,1
14	30	66135	30	52561	20,5
55	59	81739	59	70501	13,7
55	59	79551	59	65152	18,1
55	59	89297	59	70488	21,1
55	59	82204	60	68241	17,0
55	59	84716	59	69386	18,1
41	57	70842	57	59716	15,7
41	56	71428	57	58423	18,2
41	57	70853	57	61912	12,6
41	57	72586	57	59714	17,7
41	57	75150	57	60185	19,9

σ₃ (kPa)	Muestra 1		Mue	5 (0()	
	σ _d (kPa)	Mr (kPa)	od (kPa)	Mr (kPa)	Error (%)
28	55	65502	54	54003	17,6
28	54	61444	54	54194	11,8
28	54	61821	54	56295	8,9
28	54	62508	54	51149	18,2
28	54	59996	54	53482	10,9
14	52	51665	51	46022	10,9
14	51	52485	52	46940	10,6
14	52	54000	51	47600	11,9
14	51	53560	51	46693	12,8
14	51	51314	51	47034	8,3
55	80	68777	81	62017	9,8
55	81	72384	81	60794	16,0
55	80	68795	81	62013	9,9
55	80	72033	81	60121	16,5
55	80	68387	81	58913	13,9
41	78	61912	77	54396	12,1
41	77	62183	77	54890	11,7
41	77	62107	77	54883	11,6
41	77	59429	78	55070	7,3
41	77	62798	78	54054	13,9
28	75	53399	76	48856	8,5
28	75	54481	76	49398	9,3
28	75	54651	76	48571	11,1
28	75	54003	76	49127	9,0
28	75	52575	76	47936	8,8
14	73	48790	73	43848	10,1
14	72	46504	72	42762	8,0
14	72	47861	73	43547	9,0
14	72	47205	73	43793	7,2
14	72	45887	73	41627	9,3
55	109	61900	109	54991	11,2
55	109	63565	110	54856	13,7
55	109	63055	110	55337	12,2
55	109	64504	109	54415	15,6
55	109	61524	110	52106	15,3
41	106	56934	107	51307	9,9
41	106	56412	107	51304	9,1
41	106	56544	107	51500	8,9
41	106	57013	107	51805	9,1
41	106	55591	107	49721	10,6
28	103	51843	105	48950	5,6

(I-D-)	Muestra 1		Mue	Muestra 2		
σ₃ (kPa)	σ _d (kPa)	Mr (kPa)	σ _d (kPa)	Mr (kPa)	Error (%)	
28	103	50721	105	47973	5,4	
28	103	51631	105	47710	7,6	
28	103	51322	105	48328	5,8	
28	103	49618	105	46498	6,3	
14	100	46053	101	42746	7,2	
14	100	46179	102	42697	7,5	
14	100	45929	101	42736	7,0	
14	101	46118	102	43345	6,0	
14	100	45484	102	41093	9,7	

Cuadro A 14. Datos de Mr obtenidos para las muestras ensayadas a Ψ = 5 kPa

σ3 (kPa) σd (kPa) Mr (kpa) 55 39 96604 55 39 10044 55 39 99058 55 39 93904 55 39 91741 41 36 79904 41 36 78805 41 36 80233 41 36 87803		Muestra 2		
55 39 10044 55 39 99058 55 39 93904 55 39 91741 41 36 79904 41 36 78805 41 36 80233	a) σ _d (kPa) Mr (kPa)	Error (%)	
55 39 99058 55 39 93904 55 39 91741 41 36 79904 41 36 78805 41 36 80233	39	93907	2,8	
55 39 93904 55 39 91741 41 36 79904 41 36 78805 41 36 80233	4 39	95236	5,2	
55 39 91741 41 36 79904 41 36 78805 41 36 80233	39	93837	5,3	
41 36 79904 41 36 78805 41 36 80233	39	100436	-7,0	
41 36 78805 41 36 80233	. 39	100206	-9,2	
41 36 80233	36	90974	-13,9	
	36	89727	-13,9	
/1 26 07002	36	87854	-9,5	
TI 30 8/803	36	88443	-0,7	
41 36 81515	36	85134	-4,4	
28 32 66933	33	71856	-7,4	
28 33 67862	32	69746	-2,8	
28 33 70813	32	80167	-13,2	
28 32 64302	33	76271	-18,6	
28 33 72007	33	77466	-7,6	
14 30 59603	31	72688	-22,0	
14 30 54753	30	62378	-13,9	
14 30 63409	30	67787	-6,9	
14 29 53516	30	66808	-24,8	
14 30 59456	31	61987	-4,3	
55 59 70334	60	80618	-14,6	
55 59 73329	60	76370	-4,1	
55 59 72077	59	76618	-6,3	
55 58 70332	60	76616	-8,9	
55 59 67466	60	75071	-11,3	
41 57 60897				
41 57 61387	57	63859	-4,9	
41 57 57959			-4,9 -6,6	

σз (kPa)	Muestra 1		Mue	- (0()	
	σ _d (kPa)	Mr (kpa)	od (kPa)	Mr (kPa)	Error (%
41	57	62668	58	69118	-10,3
41	57	60921	57	65437	-7,4
28	54	51254	54	59618	-16,3
28	54	51460	54	58805	-14,3
28	54	49466	54	58043	-17,3
28	54	51490	54	57566	-11,8
28	54	53391	55	58388	-9,4
14	50	42605	51	48407	-13,6
14	51	42464	51	49789	-17,2
14	51	42988	51	50151	-16,7
14	51	43380	51	50981	-17,5
14	51	43408	51	47800	-10,1
55	81	63229	81	69154	-9,4
55	80	60667	80	66512	-9,6
55	81	61624	80	67244	-9,1
55	81	59922	80	69156	-15,4
55	81	59925	81	67652	-12,9
41	77	53437	78	59729	-11,8
41	77	53743	78	61528	-14,5
41	77	54883	77	58711	-7,0
41	78	55823	78	60658	-8,7
41	77	52683	78	60012	-13,9
28	75	46298	75	53326	-15,2
28	75	45700	75	51399	-12,5
28	75	45462	76	53159	-16,9
28	75	47647	76	50976	-7 , 0
28	75	46344	75	51973	-12,1
14	72	40230	73	45732	-13,7
14	72	39232	72	44311	-12,9
14	72	40193	73	47566	-18,3
14	72	39967	73	44869	-12,3
14	72	40257	73	45407	-12,8
55	108	55862	109	62389	-11,7
55	109	57509	109	63450	-10,3
55	108	56523	109	62536	-10,6
55	109	57275	110	63242	-10,4
55	109	55976	109	62129	-11,0
41	105	49895	106	56274	-12,8
41	105	51380	106	56738	-10,4
41	106	50272	106	57113	-13,6
41	105	50887	106	55867	-9,8

(I-D-)	Mue	stra 1	Mue	Muestra 2		
σ₃ (kPa)	σ _d (kPa)	Mr (kpa)	σ <mark>d (kPa)</mark>	Mr (kPa)	Error (%)	
41	105	49991	106	55553	-11,1	
28	102	45262	104	50483	-11,5	
28	103	45393	103	50891	-12,1	
28	103	44687	103	49901	-11,7	
28	103	46618	103	50995	-9,4	
28	103	44046	103	50522	-14,7	
14	100	39930	101	44729	-12,0	
14	100	40255	101	46241	-14,9	
14	100	40638	101	45759	-12,6	
14	101	40231	101	44382	-10,3	
14	101	39509	101	45019	-13,9	

Apéndice III: Salidas de Stata 12.1 para los modelos matemáticos ejecutados

A continuación, se presentan las salidas del programa STATA 12.1 para las diversas regresiones lineales realizadas para cada uno de los suelos utilizando errores estándares robustos.

Cruce Atenas

• Modelo Universal Modificado (Cary, 2008)

lnMR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
k3ln	-1.004388	.0630436	-15.93	0.000	-1.12816	8806152
k2ln	.4115839	.0344998	11.93	0.000	.3438511	.4793167
k4ln	.1231766	.0257552	4.78	0.000	.0726119	.1737413
_cons	12.35385	.037275	331.42	0.000	12.28067	12.42703

• Polinómico (Ávila, 2017)

Linear regression Number of obs = 720 F(5, 714) = 118.20Prob > F = 0.0000

R-squared = 0.3664 Root MSE = 38072

MR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
k2Succionmat k3succionmatala3 k4Toctala2 k5Toctala3 k6Invariante	704.0959 0213677 -13.79429 .0612596 407.308	54.5301 .0016004 1.636541 .0097951 32.30618	12.91 -13.35 -8.43 6.25 12.61	0.000 0.000 0.000 0.000 0.000	597.0374 0245097 -17.0073 .0420289 343.8815	811.1544 0182258 -10.58128 .0804903 470.7345
_cons	142012.2	7247.453	19.59	0.000	127783.4	156241.1

• Exponencial (Ávila, 2017)

Linear regression Number of obs = 720F(3, 716) = 87.09

Prob > F = 0.0000 R-squared = 0.2726 Root MSE = .26635

Robust Std. Err. [95% Conf. Interval] lnMR Coef. t P>|t| .2687097 .022659 11.86 0.000 .2242236 .3131958 k2sigmanetoPa -15.37 0.000 -.5809602 -.4493567 -.5151584 .0335162 k3ToctPa k4SuccionPa .0516989 .014217 3.64 0.000 .023787 .0796109 11.94985 .037515 318.54 0.000 11.87619 12.0235 cons

Guácimo

Modelo Universal Modificado (Cary, 2008)

Linear regression Number of obs = 560

F(3, 556) = 384.40 Prob > F = 0.0000 R-squared = 0.5975 Root MSE = .21644

lnMR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
k2ln k3ln	.4284096 9977277 .6141501	.0298658 .0588879	14.34 -16.94 29.04	0.000 0.000 0.000	.3697461 -1.113398 .5726098	.4870732 8820578 .6556904
k4ln _cons	12.0325	.0319304	376.83	0.000	11.96978	12.09522

• Polinómico (Ávila, 2017)

Root MSE = 17854

MR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
k2Succionmat	2135.889	46.31506	46.12	0.000	2044.914	2226.863
k3succionmatala3	0664257	.0018223	-36.45	0.000	0700051	0628463
k4Toctala2	-12.6933	.8869502	-14.31	0.000	-14.43549	-10.9511
k5Toctala3	.0576176	.0052272	11.02	0.000	.0473501	.0678851
k6Invariante	396.0652	17.03218	23.25	0.000	362.6096	429.5207
_cons	74032.1	3718.081	19.91	0.000	66728.84	81335.36

• Exponencial (Ávila, 2017)

Linear regression Number of obs = 560

F(3, 556) = 310.53 Prob > F = 0.0000 R-squared = 0.5197

Root MSE = .23642

lnMR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
k2sigmanetoPa	.2752275	.0218434	12.60	0.000	.2323219	.3181331
k3ToctPa	5066746	.0337471	-15.01	0.000	5729619	4403873
k4SuccionPa	.3215991	.0126353	25.45	0.000	.2967804	.3464178
_cons	11.66116	.0324952	358.86	0.000	11.59733	11.72498

Sede Liberia UCR

• Modelo Universal Modificado (Cary, 2008)

Linear regression Number of obs = 640F(3, 636) = 1798.22

> Prob > F = 0.0000 R-squared = 0.8255 Root MSE = .25298

lnMR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
k2ln	.4675854	.034553	13.53	0.000	.3997337	.5354371
k3ln	-1.274021	.0628268	-20.28	0.000	-1.397394	-1.150648
k4ln	1.336133	.0184038	72.60	0.000	1.299993	1.372272
_cons	11.68155	.0371882	314.12	0.000	11.60852	11.75457

• Polinómico (Ávila, 2017)

Linear regression Number of obs = 640 F(5, 634) = 1296.09

Prob > F = 0.0000 R-squared = 0.8983 Root MSE = 24711

MR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
k2Succionmat	2705.526	45.78059	59.10	0.000	2615.626	2795.426
k3succionmatala3	0525938	.0014538	-36.18	0.000	0554487	049739
k4Toctala2	-15.59123	1.136003	-13.72	0.000	-17.82201	-13.36045
k5Toctala3	.0724121	.0060864	11.90	0.000	.0604602	.084364
k6Invariante	326.7474	25.52324	12.80	0.000	276.6271	376.8677
_cons	58478.98	3913.566	14.94	0.000	50793.86	66164.1

• Exponencial (Ávila, 2017)

Linear regression Number of obs = 640 F(3, 636) = 1421.60

Prob > F = 0.0000 R-squared = 0.7610 Root MSE = .29603

lnMR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
k2sigmanetoPa k3ToctPa k4SuccionPa cons	.3006314 6468757 .70797	.0257438 .0378071 .0110259	11.68 -17.11 64.21 262.48	0.000 0.000 0.000 0.000	.2500782 7211176 .6863185 11.18705	.3511846 5726338 .7296216 11.3557

Además, se presentan los resultados de las regresiones para los modelos generales realizados con la totalidad de los datos para los suelos de baja y alta plasticidad.

Suelos con plasticidad baja

Modelo Universal Ajustado

Linear regression Number of obs = 1760F(4, 1755) = 2708.62Prob > F = 0.0000R-squared = 0.8599Root MSE = .25046

lnMR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
k2inv k3toct k4succ IP cons	.3578618 -1.490405 1.141351 -18.71878 13.78988	.0205525 .0351266 .0117 .9154015 .101991	17.41 -42.43 97.55 -20.45 135.21	0.000 0.000 0.000 0.000	.3175519 -1.559299 1.118404 -20.51417 13.58984	.3981718 -1.42151 1.164299 -16.92339 13.98992

Modelo exponencial ajustado

Linear regression	Number of obs	=	1760
	F(4, 1755)	=	2156.53
	Prob > F	=	0.0000
	R-squared	=	0.8152
	Root MSE	=	.28767

lnMR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
INVPA	.2418382	.015169	15.94	0.000	.212087	.2715895
TOCTPA	7874233	.0218784	-35.99	0.000	8303338	7445128
SUCCPA	.4760093	.0055641	85.55	0.000	.4650962	.4869223
IPPA	-16.85983	.9883927	-17.06	0.000	-18.79838	-14.92128
_cons	13.38334	.1182018	113.22	0.000	13.15151	13.61518

Suelos con plasticidad alta

• Modelo polinómico ajustado con IP

Linear regression	Number of obs	=	1280
	F(6, 1273)	=	544.03
	Prob > F	=	0.0000
	R-squared	=	0.6864
	Root MSE	=	27249

MR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
SUCC	5232.667	156.056	33.53	0.000	4926.511	5538.822
INV	415.3066	17.67511	23.50	0.000	380.6311	449.9822
TOCT	-1691.931	147.5712	-11.47	0.000	-1981.441	-1402.422
IP	4.731016	.7063033	6.70	0.000	3.34537	6.116663
SUCC2	-53.3966	1.948033	-27.41	0.000	-57.2183	-49.57489
SUCC3	.1524387	.0066748	22.84	0.000	.1393438	.1655335
_cons	105123.5	7194.204	14.61	0.000	91009.7	119237.3

• Modelo polinómico ajustado

Linear	regression	Num	ber	ο£	obs	=	1280
		F(5.	13	274)	=	635.56

F(5, 1274) = 635.56 Prob > F = 0.0000 R-squared = 0.6739 Root MSE = 27777

MR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
SUCC	5233.475	157.8533	33.15	0.000	4923.794	5543.156
INV	412.8195	17.94326	23.01	0.000	377.6179	448.021
TOCT	-758.8026	26.1435	-29.02	0.000	-810.0917	-707.5136
SUU2	-53.41226	1.981244	-26.96	0.000	-57.29912	-49.5254
SUCC3	.1524946	.0068244	22.35	0.000	.1391063	.1658829
_cons	65950.89	3041.407	21.68	0.000	59984.17	71917.61

Apéndice IV: Modelos calibrados para todos los suelos

Cuadro A 15. Modelos calibrados con los datos de todos los suelos

#	Modelo	R ²	Observación
1	$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4}$	0,619	Gran dispersión en el ajuste de los datos
2	$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4} \times \left(\frac{wIP}{P_a}\right)^{k_5}$	0,702	Dispersión de los datos para MR mayores a 100000 kPa. No
3	$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4} \times \left(\frac{wIP}{P_a} + 1\right)^{k_5}$	0,699	calcula valores mayores a 450000 kPa
4	$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4} \times \left(\frac{wIP}{P_a}\right)^{k_5} \times \left(\frac{Cc}{P_a}\right)^{k_6} \times \left(\frac{Cu}{P_a}\right)^{k_7}$	0,703	Variables no significativas: Cc y Cu
5	$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4} \times \left(\frac{wIP}{P_a}\right)^{k_5}$	0,703	Sobrestima los datos
6	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a})}$	0,590	Gran dispersión en el ajuste de los datos
7	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a} + k_5 \times \frac{wlP}{P_a} + k_6 \times \frac{Cc}{P_a} + k_7 \times \frac{Cu}{P_a})}$	0,700	Variable no significativa: Cc
8	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a} + k_5 \times \frac{wIP}{P_a} + k_6 \times \frac{Cu}{P_a})}$	0,700	Gran dispersión en el ajuste de los datos
9	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a} + k_5 \times \frac{wIP}{P_a})}$	0,694	Gran dispersión en el ajuste de los datos, sobrestima los valores de MR
10	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a} + k_5 \times \frac{\theta_{neto}^2}{P_a} + k_6 \times \frac{\tau_{oct}^2}{P_a} + k_7 \times \frac{\psi^2}{P_a} + k_8 \times \frac{\theta_{neto}^3}{P_a} + k_9 \times \frac{\tau_{oct}^3}{P_a} + k_{10} \times \frac{\psi^3}{P_a})}$	0,651	Variables no significativas: θ_{neto} , θ_{neto} , τ_{oct} , θ_{neto} , τ_{oct} ,
11	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\tau_{oct}}{P_a} + k_3 \times \frac{\psi}{P_a} + k_4 \times \frac{\psi^2}{P_a} + k_5 \times \frac{\psi^3}{P_a})}$	0,609	Distribución inadecuada de los datos

#	Modelo	R ²	Observación
12	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\tau_{oct}}{P_a} + k_3 \times \frac{\psi}{P_a} + k_4 \times \frac{\psi^2}{P_a} + k_5 \times \frac{\psi^3}{P_a} + k_6 \times \frac{wIP}{P_a})}$	0,691	Sobrestima los datos
13	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct} + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto}$	0,633	Sobrestima y subestima los datos (nube de puntos)
14	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^2 + k_4 \times \psi^3 + k_5 \times \tau_{oct} + k_6 \times \tau_{oct}^2 + k_7 \times \tau_{oct}^3 + k_8 \times \theta_{neto} + k_9 \times \theta_{neto}^2 + k_{10} \times \theta_{neto}^3$	0,650	Variables no significativas: θ_{neto}^{2} , τ_{oct}^{2} , θ_{neto}^{3} y τ_{oct}^{3}
15	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^2 + k_4 \times \psi^3 + k_5 \times \tau_{oct} + k_6 \times \theta_{neto}$	0,642	Sobrestima valores de MR menores a 300000 kPa y no calcula valores entre los 250000 kPa y los 350000 kPa
16	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct} + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto} + k_7 \times wIP + k_8 \times Cc + k_9 \times Cu$	0,670	Sobrestima y subestima los datos (nube de puntos) para
17	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct} + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto} + k_7 \times Cu$	0,669	 los Mr menores a 300000 kPa, no calcula valores entre los 300000 kPa y los 350000 kPa.
18	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct} + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto} + k_7 \times Wip \times Cc \times Cu$	0,635	Subestima los valores mayores a 400000 kPa
19*	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \theta_{neto} + k_5 \times wIP + k_6 \times Cu + k_7 \times wIP \times \psi + k_8 \times wIP \times \psi^3 + k_9 \times Cc \times \psi + k_{10} \times Cu \times \psi + k_{11} \times Cu \times \psi^3 + k_{12} \times Cu \times \tau_{oct}^2 + k_{13} \times Cu \times \tau_{oct}^3$	0,753	Sobrestima los datos menores a 600000 kPa. Cantidad de coeficientes hace que el modelo sea poco práctico.

^{*} Este modelo se obtiene luego de varias iteraciones en las que se inició multiplicando todas las variables del modelo polinómico de Ávila (2017) por las variables propuestas de wIP, Cc y Cu; donde se obtuvieron un total de 27 coeficientes. Seguidamente, se fueron descartando las variables que no eran significativas en el modelo hasta obtener esta forma.

Apéndice V: Modelos calibrados para suelos con IP menor o igual a 15

Cuadro A 16. Modelos calibrados para suelos con IP≤15

#	Modelo	R ²	Observación
1	$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4}$	0,761	Gran dispersión para datos mayores a los 100000 kPa
2	$Mr = k_{1} \times P_{a} \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_{a}}\right)^{k_{2}} \times \left(\frac{\tau_{oct}}{P_{a}} + 1\right)^{k_{3}} \times \left(\frac{(\psi_{m0} - \psi_{m})}{P_{a}} + 1\right)^{k_{4}} \times \left(\frac{IP}{P_{a}} + 1\right)^{k_{5}} \times \left(\frac{WIP}{P_{a}} + 1\right)^{k_{6}} \times \left(\frac{No.200}{P_{a}} + 1\right)^{k_{7}} \times \left(\frac{Cc}{P_{a}} + 1\right)^{k_{8}} \times \left(\frac{Cu}{P_{a}} + 1\right)^{k_{9}}$	0,860	Ajuste adecuado de los datos k6, k7, k8 y k9 = 0
3	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct}^2 + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto}$	0,752	No calcula valores de mayores a 500000 kPa Dispersión los datos
4	$ \begin{aligned} Mr = \ k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct}^2 + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto} + k_7 \times IP + k_8 \times wIP \\ + k_9 \times No.200 + k_{10} \times Cc + k_{k11} \times Cu \end{aligned} $	0,767	Sobrestima valores menores y subestima los mayores de 500000 kPa k7, k8, k9 y k10 = 0
5	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^2 + k_4 \times \psi^3 + k_5 \times \tau_{oct} + k_6 \times \tau_{oct}^2 + k_7 \times \tau_{oct}^3 + k_8 \times \theta_{neto} + k_9 \times \theta_{neto}^2 + k_{10} \times \theta_{neto}^3$	0,757	Variables no significativas: θ_{neto} , θ_{neto}^2 , θ_{neto}^3 y τ_{oct}
6	$ \begin{aligned} \mathit{Mr} = \ k_{1} + k_{2} \times \psi + k_{3} \times \psi^{2} + k_{4} \times \psi^{3} + k_{5} \times \tau_{oct} + k_{6} \times \tau_{oct}^{3} + k_{7} \times \theta_{neto} + k_{8} \times \theta_{neto}^{2} \\ + k_{9} \times \theta_{neto}^{3} \end{aligned} $	0,756	Variables no significativas: θ_{neto}^{2} , θ_{neto}^{3}
7	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct} + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto}$	0,751	Sobrestima valores menores y subestima los mayores de 500000 kPa
8	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^2 + k_4 \times \psi^3 + k_5 \times \tau_{oct} + k_6 \times \theta_{neto}$	0,742	No calcula módulos mayores a 500000 kPa
9	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a})}$	0,783	Ajuste adecuado para MR menores a 100000 kPa, dispersión de datos para valores mayores
10	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a} + k_5 \times \frac{IP}{P_a} + k_6 \times \frac{wIP}{P_a} + k_7 \times \frac{No.200}{P_a} + k_8 \times \frac{Cc}{P_a} + k_9 \times \frac{Cu}{P_a})}$	0,815	Ajuste adecuado k6, k7, k8 y k9 = 0

Apéndice VI: Modelos calibrados para suelos con IP mayor a 15

Cuadro A 17. Modelos calibrados para suelos con IP>15

#	Modelo	R ²	Observación
1	$Mr = k_1 \times P_a \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_a}\right)^{k_2} \times \left(\frac{\tau_{oct}}{P_a} + 1\right)^{k_3} \times \left(\frac{(\psi_{m0} - \psi_m)}{P_a} + 1\right)^{k_4}$	0,364	Sobrestima y subestima los datos (nube de puntos)
2	$Mr = k_{1} \times P_{a} \times \left(\frac{\theta_{neto} - 3 \times \Delta u_{w-sat}}{P_{a}}\right)^{k_{2}} \times \left(\frac{\tau_{oct}}{P_{a}} + 1\right)^{k_{3}} \times \left(\frac{(\psi_{m0} - \psi_{m})}{P_{a}} + 1\right)^{k_{4}} \times \left(\frac{IP}{P_{a}} + 1\right)^{k_{5}} \times \left(\frac{wIP}{P_{a}} + 1\right)^{k_{6}} \times \left(\frac{No.200}{P_{a}} + 1\right)^{k_{7}} \times \left(\frac{Cc}{P_{a}} + 1\right)^{k_{8}} \times \left(\frac{Cu}{P_{a}} + 1\right)^{k_{9}}$	0,378	Sobrestima y subestima los datos (nube de puntos) k6, k7, k8 y k9 = 0
3	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct}^2 + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto}$	0,482	Sobrestima y subestima los datos (nube de puntos)
4	$ \begin{aligned} Mr = \ k_1 + k_2 \times \psi + k_3 \times \psi^3 + k_4 \times \tau_{oct}^2 + k_5 \times \tau_{oct}^3 + k_6 \times \theta_{neto} + k_7 \times IP + k_8 \times wIP \\ + k_9 \times No. \ 200 + k_{10} \times Cc + k_{k11} \times Cu \end{aligned} $	0,527	Subestima los datos
5	$ \begin{aligned} Mr = \ k_{1} + k_{2} \times \psi + k_{3} \times \psi^{2} + k_{4} \times \psi^{3} + k_{5} \times \tau_{oct} + k_{6} \times \tau_{oct}^{2} + k_{7} \times \tau_{oct}^{3} + k_{8} \times \theta_{neto} \\ + k_{9} \times \theta_{neto}^{2} + k_{10} \times \theta_{neto}^{3} \end{aligned} $	0,692	Variables no significativas: θ_{neto}^2 , θ_{neto}^3
6	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^2 + k_4 \times \psi^3 + k_5 \times \tau_{oct} + k_6 \times \tau_{oct}^2 + k_7 \times \tau_{oct}^3 + k_8 \times \theta_{neto}$	0,687	Ajuste adecuado de los datos
7	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^2 + k_4 \times \psi^3 + k_5 \times \tau_{oct} + k_6 \times \tau_{oct}^2 + k_7 \times \theta_{neto}$	0,685	Ajuste adecuado de los datos
8	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^2 + k_4 \times \psi^3 + k_5 \times \tau_{oct} + k_6 \times \theta_{neto}$	0,673	Ajuste adecuado de los datos
9	$Mr = k_1 + k_2 \times \psi + k_3 \times \psi^2 + k_4 \times \psi^3 + k_5 \times \tau_{oct} + k_6 \times \theta_{neto} + k_7 \times IP$	0,685	Ajuste adecuado de los datos
10	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a})}$	0,326	Sobrestima y subestima los datos (nube de puntos)
11	$Mr = k_1 \times P_a \times e^{(k_2 \times \frac{\theta_{neto}}{P_a} + k_3 \times \frac{\tau_{oct}}{P_a} + k_4 \times \frac{\psi}{P_a} + k_5 \times \frac{IP}{P_a} + k_6 \times \frac{wIP}{P_a} + k_7 \times \frac{No.200}{P_a} + k_8 \times \frac{Cc}{P_a} + k_9 \times \frac{Cu}{P_a})}$	0,340	Sobrestima y subestima los datos (nube de puntos) k6, k7, k8 y k9 = 0

ANEXOS

Anexo I: Protocolo de ensayo para la determinación del Mr

Protocolo de ensayo para la determinación del módulo resiliente en distintas condiciones de humedad propuesto por Ávila (2017).

I. Preparación y moldeo del material

- 1) Se seca el material al aire y se tamiza por la malla #4 (4,76 mm), se almacena en recipientes que impidan que gane humedad (Baldes, estañones, entre otros).
- Se toma una muestra de 250 g de material y se le realiza una prueba de humedad de acuerdo con la norma ASTM D 2216. Se obtiene el contenido de humedad actual del material.
- 3) Se deben preparar muestras de 1500 g de suelo para cada espécimen con base en la humedad que el material ya posee, se debe calcular la cantidad de agua a añadir al material para alcanzar la humedad óptima obtenida del ensayo de proctor estándar (ASTM D 698).
- 4) Cada muestra preparada con la humedad óptima debe ser colocada en una bolsa plástica y dejada reposar por 24 horas.
- 5) Para realizar cada espécimen de 70 mm de diámetro y 140 mm de alto, se utiliza una bolsa de 1500 g de suelo previamente preparado, un molde de acero con collarín, una membrana de látex, un papel filtro de 70 mm de diámetro, un martillo de proctor estándar, una espátula, una bandeja metálica, una cuchara de pulpero, un recipiente metálico para tomar una muestra de humedad, una balanza, un enrasador, bolsas plásticas con cierre hermético y un horno.
 - a. Se extiende la bolsa de suelo en la bandeja metálica y se separa en tres partes iguales.
 - b. Se prepara el molde de acero colocándole un papel filtro al fondo para evitar que el suelo se pegue y se le coloca la membrana de látex.
 - c. Se coloca la primera capa de suelo en el molde (1/3 del suelo en la bandeja) con la cuchara de pulpero y se le aplican 25 golpes con el mazo de proctor estándar. Se repite el procedimiento con dos capas más, hasta completar 3 capas de suelo con 25 golpes cada una.

- d. Se retira el collarín y se enrasa el espécimen procurando dejar la cara lo más plana posible. Se extrae la pastilla y se le retira la membrana de látex. Seguidamente se pesa la pastilla y se envuelve en una bolsa plástica con cierre hermético. El espécimen es colocado en una cámara a temperatura y humedad controlada por un periodo no menor a 24 horas.
- e. Se pesa la cápsula metálica que se va a utilizar para determinar el contenido de humedad. Del material sobrante se obtiene una muestra y se coloca en la cápsula metálica para la muestra de humedad, se pesa.
- f. Se coloca la cápsula metálica en el horno por 24 horas a 110° C. Pasado ese tiempo de saca del horno y se deja enfriar para finalmente determinar el peso seco del suelo y calcular el contenido de agua del espécimen (ASTM D 2216).
- 6) Si el material a utilizar clasifica como de grano grueso (bases y subbases), se deberán modificar las dimensiones de los especímenes (100 mm de diámetro y 200 mm de alto), así como la cantidad, tamizaje y método de compactación del material (Proctor modificado ASTM D 1557).

II. Acondicionamiento de las pastillas a la humedad meta

Inicialmente se deben definir los contenidos de humedad a utilizar en los ensayos de Mr.

- 1) Se retira el espécimen de la cámara de humedad y temperatura controlada.
- Se le coloca una membrana de látex y se reporta el peso de la pastilla. Se dobla la membrana de ambos extremos hasta que las caras planas de la pastilla queden al descubierto.
- 3) Muestras más secas que el contenido óptimo de humedad:
 - a. Se coloca el espécimen sobre una superficie metálica al aire libre y se toma el peso de la misma cada cierto tiempo hasta que haya perdido la cantidad de agua que se desea, para alcanzar un contenido de humedad establecido.
- 4) Muestras más húmedas que el contenido óptimo de humedad:
 - a. Se coloca una cama de material poroso en una tina o palangana y se inunda hasta que el agua quede al mismo nivel que la cama. Se coloca la pastilla encima del material poroso. Se reporta el peso de la pastilla cada cierto tiempo, hasta que haya ganado la cantidad de agua que se desea, para alcanzar un contenido de humedad establecido.

- b. Se recomienda dar vuelta a la pastilla frecuentemente para que el agua que ingresa por capilaridad lo haga por ambos extremos.
- 5) Se coloca la pastilla ya acondicionada nuevamente en la bolsa plástica con cierre hermético y se introduce en la cámara de humedad y temperatura controlada por un período no menor a 24 horas.

III. Protocolo de esfuerzos para el ensayo de módulo resiliente

En general, Cary (2008) propone modificar la forma en que los esfuerzos son definidos en el NCHRP 1-28A dado que en este protocolo los esfuerzos son determinados con base en la teoría de los esfuerzos efectivos, y para realizar adecuadamente un ensayo en condiciones no saturadas es necesario utilizar la teoría de esfuerzos efectivos. En el cuadro A1 se muestran los principales cambios relacionados con la aplicación de las teorías de esfuerzos totales y efectivos realizadas por Cary.

Cuadro A 18. Cambios en los procedimientos de carga para el ensayo de Mr en suelos no saturados

Enfoque esfuerzo total	Enfoque de esfuerzo efectivo (suelos no saturados)
No se usa $(u_a - u_w)$	Se usa $(u_a - u_w)$
$\sigma_{confinamiento} = \sigma_3 = \sigma_{neto-confinamiento}$	$\sigma_{confinamiento} = \sigma_3 = \sigma_{neto-confinamineto} + u_a$
$\sigma_{contacto} = 0.2 * \sigma_{confinamiento}$	$\sigma_{contacto} = 0.2 * \sigma_{neto-confinamineto}$
$\sigma_d = \sigma_{max}$	$\sigma_d = \sigma_{max}$
$\sigma_{cíclico} = \sigma_{max} - \sigma_{contacto}$	$\sigma_{ciclico} = \sigma_{max} - \sigma_{contacto}$

Fuente. Traducido de Cary (2008).

De acuerdo con lo anterior, Cary (2008) propone que los esfuerzos a aplicar sean los indicados en los cuadros A2-A4, para los tres tipos de materiales considerados en el NCHRP 1-28A.

Continuando con el procedimiento, tenemos:

- 1) Seleccionar la secuencia de esfuerzos (cuadros A2-A4) de acuerdo con el material a utilizar.
- Definir las succiones matriciales correspondientes con los contenidos de humedad a los cuales se prepararon las pastillas, utilizando la SWCC calculada previamente.
- 3) Dado que la succión matricial depende de la presión de poro de agua y de la presión de poro de aire, se define la presión de poro de agua como cero. Por lo que:

$$\psi_m = u_a$$

4) Adicionar el valor de presión de poro de aire (succión matricial) determinado, a la secuencia de esfuerzos a utilizar en el ensayo de módulo resiliente (Cuadros A2 - A4).

Cuadro A 19. Ensayo modificado para cálculo del Mr en suelos no saturados para bases y subbases

Secuencia	Presión de confinamiento (kPa)	Esfuerzo de contacto (kPa)	Esfuerzo cíclico (kPa)	Esfuerzo máximo (kPa)	Número de repeticiones
0	103,05 + u _a	20,7	207,0	227,7	1000
1	20,7+ u _a	4,1	10,4	14,5	100
2 3	41,4+ u _a	8,3	20,7	29,0	100
3	69,0+ u _a	13,8	34,5	48,3	100
4	103,05+ u _a	20,7	51,8	72,5	100
5	138+ u _a	27,6	69,0	96,6	100
5 6 7	20,7+ u _a	4,1	20,7	24,8	100
	41,4+ u _a	8,3	41,4	49,7	100
8	69,0+ u _a	13,8	69,0	82,8	100
9	103,05+ u _a	20,7	103,5	124,2	100
10	138+ u _a	27,6	138,0	165,6	100
11	20,7+ u _a	4,1	41,4	45,5	100
12	41,4+ u _a	8,3	82,8	91,1	100
13	69,0+ u _a	13,8	138,0	151,8	100
14	103,05+ u _a	20,7	207,0	227,7	100
15	138+ u _a	27,6	276,0	303,6	100
16	20,7+ u _a	4,1	62,1	66,2	100
17	41,4+ u _a	8,3	124,2	132,5	100
18	69,0+ u _a	13,8	207,0	220,8	100
19	103,05+ u _a	20,7	310,5	331,2	100
20	138+ u _a	27,6	414,0	441,6	100
21	20,7+ u _a	4,1	103,5	107,6	100
22	41,4+ ua	8,3	207,0	215,3	100
23	69,0+ u _a	13,8	345,0	358,8	100
24	103,05+ u _a	20,7	517,5	538,2	100
25	138+ u _a	27,6	690,0	717,6	100
26	20,7+ u _a	4,1	144,9	149,0	100
27	41,4+ u _a	8,3	289,8	298,1	100
28	69,0+ u _a	13,8	483,0	496,8	100
29	103,05+ u _a	20,7	724,5	745,2	100
30	138+ u _a	27,6	966,0	993,6	100

Fuente. Traducido de Cary (2008).

Cuadro A 20. Ensayo modificado para cálculo del Mr en suelos no saturados para suelos granulares

Secuencia	Presión de confinamiento (kPa)	Esfuerzo de contacto (kPa)	Esfuerzo cíclico (kPa)	Esfuerzo máximo (kPa)	Número de repeticiones
0	27,6 + u _a	5,5	55,2	60,7	1000
1	$13.8 + u_a$	2,8	6,9	9,7	100
2	27,6 + u _a	5,5	13,8	19,3	100
3	$41,4 + u_a$	8,3	20,7	29,0	100
4	$55,2 + u_a$	11,0	27,6	38,6	100
5	$82,8 + u_a$	16,6	41,4	58,0	100
6	$13,8 + u_a$	2,8	13,8	16,6	100
7	$27,6 + u_a$	5,5	27,6	33,1	100
8	$41,4 + u_a$	8,3	41,4	49,7	100
9	55,2 + u _a	11,0	55,2	66,2	100
10	$82,8 + u_a$	16,6	82,8	99,4	100
11	$13.8 + u_a$	2,8	27,6	30,4	100

Secuencia	Presión de confinamiento (kPa)	Esfuerzo de contacto (kPa)	Esfuerzo cíclico (kPa)	Esfuerzo máximo (kPa)	Número de repeticiones
12	27,6 + u _a	5,5	55,2	60,7	100
13	$41,4 + u_a$	8,3	82,8	91,1	100
14	$55,2 + u_a$	11,0	110,4	121,4	100
15	$82.8 + u_a$	16,6	165,6	182,2	100
16	$13.8 + u_a$	2,8	41,4	44,2	100
17	$27,6 + u_a$	5,5	82,8	88,3	100
18	$41,4 + u_a$	8,3	124,2	132,5	100
19	$55,2 + u_a$	11,0	165,6	176,6	100
20	$82,8 + u_a$	16,6	248,4	265,0	100

Fuente. Traducido de Cary (2008).

Cuadro A 21. Ensayo modificado para cálculo del Mr en suelos no saturados para suelos de grano fino

Secuencia	Presión de confinamiento (kPa)	Esfuerzo de contacto (kPa)	Esfuerzo cíclico (kPa)	Esfuerzo máximo (kPa)	Número de repeticiones
0	27,6 + u _a	5,5	48,3	53,8	1000
1	$55,2 + u_a$	11,0	27,6	38,6	100
2	41,4 + u _a	8,3	27,6	35,9	100
2 3	$27,6 + u_a$	5,5	27,6	33,1	100
4	$13.8 + u_a$	2,8	27,6	30,4	100
5	$55,2 + u_a$	11,0	48,3	59,3	100
6 7	41,4 + u _a	8,3	48,3	56,6	100
7	$27,6 + u_a$	5,5	48,3	53,8	100
8	$13.8 + u_a$	2,8	48,3	51,1	100
9	$55,2 + u_a$	11,0	69,0	80,0	100
10	$41,4 + u_a$	8,3	69,0	77,3	100
11	$27,6 + u_a$	5,5	69,0	74,5	100
12	$13.8 + u_a$	2,8	69,0	71,8	100
13	$55,2 + u_a$	11,0	96,6	107,6	100
14	$41,4 + u_a$	8,3	96,6	104,9	100
15	$27,6 + u_a$	5,5	96,6	102,1	100
16	$13.8 + u_a$	2,8	96,6	99,4	100

Fuente. Traducido de Cary (2008).

IV. Implementación del ensayo en el equipo Triaxial Dinámico de GCTS

Partes del equipo triaxial dinámico de GCTS

El equipo cuenta con las siguientes partes:

- a. Panel de control de presiones
- b. Controlador de los sensores (SCON)
- c. Cámara triaxial
- d. Marco de carga
- e. Bomba hidráulica
- f. Computadora que posee el software GCTS CATS con el que se controla todo el equipo
- g. Deformímetros (LVDT, por sus siglas en inglés)

Saturación del disco de cerámica de alto valor de entrada de aire (AVEA)

El disco que posee el equipo triaxial de GCTS, tiene una capacidad de 5 bares (500 kPa), por lo que es importante tomar en cuenta que esa es la presión máxima que permite circular a través de él.

Es indispensable saturar el disco antes de iniciar con las pruebas de la siguiente forma:

- 1) Colocar el pedestal inferior con el disco de cerámica dentro de la cámara triaxial.
- Ensamblar la cámara y llenarla con agua hasta quedar 5 cm por encima de la superficie del disco de cerámica.
- 3) Abrir la válvula de presión de poro de agua, con el fin de permitir el paso del agua a través del disco de cerámica.
- 4) Cerrar las demás válvulas y aplicar presión de cámara utilizando la válvula que se encuentra en la parte superior de la cámara. Se pueden aplicar unos 100 kPa. Dejar el sistema de esta manera por 24 horas.
- 5) Una vez que salga agua a través de la válvula de presión de poro de agua, se podrá asegurar que el disco está saturado.
- 6) Reducir lentamente la presión y drenar el agua.
- 7) Limpiar el exceso de agua y la cámara triaxial.

Actividades previas al inicio del ensayo

- a. Es indispensable encender la bomba al menos una hora antes de iniciar el ensayo, dado que para que funcione adecuadamente debe calentarse el aceite hidráulico.
- b. Si el ensayo se va a realizar con agua como medio confinante, es recomendable engrasar la cámara triaxial para evitar la formación de burbujas de aire.
- c. Colocar grasa (vaselina) en los empaques de la cámara triaxial para evitar fugas de aire
 o agua.
- d. La tapa de la cámara triaxial (anillo de acero) cuenta con 4 tornillos, es necesario socarlos en diagonal. Se recomienda el uso de un torquímetro para asegurar que cada tornillo quede ajustado con la misma presión.
- e. Si se va a realizar el ensayo en un suelo blando se recomienda el uso del LVDT que se encuentra instalado en el marco de carga (controla el movimiento del pistón), para medir las deformaciones, dado que los LVDT's pequeños no cuentan con tanto rango

de deformación como el que puede sufrir un suelo blando. Para configurar ya sea el uso del LVDT del pistón o los dos LVDT's pequeños, es necesario indicarle al programa con cuál debe medir la deformación, ir a *test>configuration>inputs>gauge axial def. input:* Avg. axial deform. y asegurarse de que la deformación sea el promedio, luego ir a:

test>configuration>MRT>Inputs:

Gauge axial deform. 1: Ram displacement o axial gauge def. 1

Gauge axial deform. 2: Ram displacement o axial gauge def. 2

Seleccionar ya sea el LVDT del pistón (*Ram displacement*) para los dos casos o si van a utilizar los LVDT's pequeños, seleccionar el *axial gauge def. 1* y el *axial gauge def. 2*.

Generar el ensayo y el proyecto

Dentro del software no hay un ensayo ya definido para el módulo resiliente en condiciones no saturadas dado que no existe un protocolo aún; por lo que es necesario crearlo. A continuación, se explica cómo hacerlo:

Test Set Up>New

Description: Colocar el nombre del ensayo (MR no sat, por ejemplo)

Stages-(0): New>Resilient Modulus> OK

Testing Procedure: Seleccionar User Defined

User defined testing procedure: Seleccionar Standar>Select: Seleccionar la base de la NCHRP que corresponda con el tipo de material que se va a utilizar, seguidamente dar Add.

Aquí es importante que se modifiquen los valores de la presión de celda (confinamiento) para que correspondan con los indicados en los Cuadros 13-15, y se cumpla con la técnica de traslación de ejes.

Seleccionar *OK* y cerrar la ventana de *Select*

Revisar la cantidad de ciclos de acondicionamiento (deben ser 1000) y los ciclos por esfuerzo desviador (deben ser 100)

Revisar el tiempo de carga (*load time:0.1* para bases y *0.2* para suelos)

Revisar tiempo total (total time: 1 seg.)

Revisar la forma de la onda (wave form: Haversine)

Seleccionar *OK* y cerrar la ventana

Para generar el proyecto se debe seguir lo siguiente:

P/S/S>New Project>ID: Colocar nombre>OK

Doble click en el proyecto creado> New Sample> OK

Doble click en la muestra creada>*New Specimen>OK*

Seleccionar el ensayo (*MR no sat*, creado en el paso anterior) y presionar *Execute*, con lo que se comenzará a correr el ensayo, por lo que se deberá tener listo el espécimen dentro de la cámara triaxial, lo cual se explica en el siguiente paso (*Realizar el ensayo*).

En cada paso de creación de proyecto, muestra y espécimen, revisar y completar la información solicitada, modificar las dimensiones del espécimen para que concuerden con el que se va a utilizar.

Crear un espécimen nuevo en el sistema para cada pastilla a fallar, inclusive si por alguna razón dicha prueba falla, no se recomienda utilizar dos veces el mismo espécimen creado en el sistema para fallar una pastilla distinta.

Realizar el ensayo

- Retirar la pastilla a utilizar de la cámara a humedad y temperatura controlada. Tomar el peso de la misma, corregir la succión a utilizar si es necesario.
- 2) Colocar doble membrana a la pastilla.
- 3) Montar la pastilla dentro de la cámara triaxial, colocarla en los pedestales y sujetarla utilizando o-rings.

- 4) Colocar el pistón y acomodarlo para que quede correctamente alineado.
- 5) Cerrar adecuadamente la cámara triaxial ajustando los tornillos, asegurarse que no queden fugas de aire o agua.
- 6) Ajustar el pistón acercando el marco de carga a 2 mm del balín metálico, terminar de acercarlo aplicando un esfuerzo desviador de 5 kPa.
- 7) Si se utilizan los LVDT's pequeños, montarlos adecuadamente en el pedestal y ajustarlos.
- 8) Para ajustar las presiones se recomienda tener todas las válvulas que llegan a la cámara cerradas, ajustar las perillas en el controlador de presiones a *Servo Pressure*, con lo cual el software aplicara un esfuerzo de confinamiento, de presión de poro de agua y de aire, relativamente alto. Ir al software y reducir los esfuerzos aplicado por el software a cero. Abrir las válvulas de presión de confinamiento, presión de poro de aire y la de drenaje. Asegurarse que la presión de poro de agua se mantenga en cero.
- 9) Aplicar un esfuerzo de confinamiento inicial utilizando el valor que se empleará para la secuencia de acondicionamiento (los primeros 1000 ciclos).
- 10) Aplicar la presión de poro de aire a la que se va a realizar el ensayo (succión matricial).

 Dejar la pastilla estabilizarse, estará lista (en equilibrio) para realizar el ensayo cuando no salga agua por la válvula de drenaje.
- 11) Poner en cero la lectura de la deformación.
- 12) Correr el ensayo utilizando el proyecto definido en el paso anterior.
- 13) Es importa monitorear el valor de la taza de desplazamiento vertical (R_v) ya que no debe superar el valor máximo permitido por la norma de 1.1. Si este requisito no se cumple se debe detener el ensayo y alinear adecuadamente la pastilla.
- 14) Al finalizar el ensayo, reduzca la presión de poro de aire a cero y luego la presión de cámara (confinamiento). Abre las válvulas de drenaje para que se termine de eliminar la presión.
- 15) Eleve el pistón hasta que ya no esté en contacto con el espécimen.
- 16) Retire el espécimen de la cámara, quite las membranas y tome una muestra de humedad.
- 17) Exporte los datos (resultados) en formato que pueda ser leído por Microsoft Excel u otra hoja de cálculo.

Limitaciones del equipo

El equipo cuenta con algunas limitaciones que se deben tomar en cuenta antes de definir las presiones con que se van a realizar los ensayos.

- a. Presión máxima que resiste la piedra de cerámica: 500 kPa.
- b. El software sólo cambiará la presión de la celda cuando el cambio en la presión de la celda sea superior al 3% de la presión de la celda que este actualmente en el ciclo, dentro de un mismo ensayo. Por ejemplo, si para el primer ciclo el esfuerzo de confinamiento es de 400 kPa y para el segundo ciclo es de 410 kPa, el software no cambiará la presión de celda de 400 kPa a 410 KPa, dado que el 3% de 400 kPa (valor actual) es 12 kPa y por lo tanto el mínimo valor permitido por el software para hacer la variación en la presión debe ser 412 kPa.
- c. Presión máxima que resiste la cámara triaxial con aire: 250 kPa, con agua: 1000 kPa.
- d. Rango de deformación máximo permitido por los LVDT's pequeños: 4 mm.
- e. Máxima presión de agua que permite aplicar el controlador de presiones: 500 kPa.
- f. Si surgen problemas cuando se exporten los resultados, verificar el *Scan&Servo Loop rate*, debe estar en 1024 Hz.
- g. No permitir que el equipo se sobre caliente al realizar más de dos pruebas seguidas, se recomienda utilizar aire acondicionado a 23 °C en la habitación mientas se corre el ensayo. Dar un tiempo de al menos una hora entre pruebas.
- h. Si surge un error de conexión durante la ejecución del ensayo, se recomienda reiniciar el SCON.